Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 561-568    DOI: 10.11901/1005.3093.2024.301
  研究论文 本期目录 | 过刊浏览 |
掺杂LaYFeO3 陶瓷吸波性能的影响
周影影1(), 张瑛嫺2, 淡卓娅1, 杜旭1, 杜浩楠1, 甄恩远1, 罗发3
1.西安航空学院材料工程学院 西安 710077
2.西安工业大学新能源科学与技术研究院 西安 710021
3.西北工业大学材料学院 凝固技术全国重点实验室 西安 710072
Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics
ZHOU Yingying1(), ZHANG Yingxian2, DAN Zhuoya1, DU Xu1, DU Haonan1, ZHEN Enyuan1, LUO Fa3
1.School of Material Engineering, Xi'an Aeronautical University, Xi'an 710077, China
2.Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
3.State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, North-western Polytechnical University, Xi'an 710072, China
引用本文:

周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
Yingying ZHOU, Yingxian ZHANG, Zhuoya DAN, Xu DU, Haonan DU, Enyuan ZHEN, Fa LUO. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(8): 561-568.

全文: PDF(8571 KB)   HTML
摘要: 

用溶胶凝胶法和高温烧结法制备掺杂La3+的YFeO3,使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、EDS能谱仪(EDS)和网络矢量分析仪(VNA)等手段表征掺杂前后的YFeO3,研究了掺杂La3+对YFeO3的物相、组成、微观形貌、电磁参数以及吸波性能的影响。结果表明,随着La3+含量的提高YFeO3的晶粒减小且晶界逐渐模糊。这个结果,可能与择优取向的增强和不完全取代有关。结果还表明,La3+可取代YFeO3晶体中的Y3+。适量的La掺杂可提高YFeO3陶瓷粉末的阻抗匹配和衰减系数。La掺杂使介电常数的增大,可归因于电子在Fe3+和Fe2+之间的跳跃。Y0.7La0.3FeO3的有效吸收宽带(RL ≤ -10 dB)达到2.84 GHz。

关键词 无机非金属材料特种功能吸波材料掺杂改性YFeO3电磁参数    
Abstract

La-doped YFeO3 ceramics, namely Y1-x La x FeO3 (x = 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel method and high-temperature sintering method, then the YFeO3 ceramics before and after La doping was characterized by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and network vector analyzer (VNA). So that the effect of the La3+ doping amount on the micromorphology, phase constituents, chemical composition, electromagnetic parameters and microwave absorption performance of Y1-x La x FeO3 were studied. The result shows that as the La doping amount increases, the grain size is gradually decreasing and the grain boundaries are gradually blurred of the ceramics, which may be related to the enhanced preferential orientation of grains and incomplete replacement of the doping atoms. The analysis results confirm that the prepared ceramics consist merely of the YFeO3-type phase, and La3+ can replace the Y3+ position in the YFeO3 crystal. It is clear that an appropriate amount of La doping can effectively increase the impedance matching and attenuation coefficients of YFeO3 ceramic powder. The increase in the dielectric constant may be attributed to the hopping of electrons between Fe3+ and Fe2+ in the case of La doping. The effective absorption broadband (RL ≤ -10 dB) of Y0.7La0.3FeO3 can reach 2.84 GHz.

Key wordsinorganic non-metallic materials    special functional    microwave absorbing materials    doping modification    YFeO3    electromagnetic parameters
收稿日期: 2024-07-11     
ZTFLH:  TB34  
基金资助:国家科技重大专项(J2019-VI-0015-0130);陕西省青年科技新星项目(2023KJXX-075);陕西省青年创新团队项目(23JP072)
通讯作者: 周影影,教授,zhouyingying@xaau.edu.cn,研究方向为吸波材料
Corresponding author: ZHOU Yingying, Tel: (029)84255622, E-mail: zhouyingying@xaau.edu.cn
作者简介: 周影影,女,1989年生,博士
图1  用溶胶-凝胶法制备Y1-x La x FeO3的工艺流程
SampleY(NO3)3·6H2O / gFe(NO3)3·9H2O / gLa(NO3)2·6H2O / gC6H8O7·H2O / g
x = 029.831.3032.7
x = 0.126.1530.643.2831.88
x = 0.222.6729.896.4131.09
x = 0.319.3629.179.3830.34
x = 0.416.2028.4812.2129.63
表1  样品原料的质量
图2  Y1-x La x FeO3的SEM照片
图3  Y1-x La x FeO3 (x = 0,0.1,0.2,0.3,0.4)的XRD谱
Y1-x La x FeO3x = 0x = 0.1x = 0.2x = 0.3x = 0.4
2θ / (°)33.6814133.5727433.3010833.2576133.09462
sinθ0.289710.288800.286530.286170.28481
d / nm0.2658870.2667240.2688370.2691760.270461
表2  Y1-x La x FeO3 (121)的晶面间距
图4  YFeO3、Y0.6La0.4FeO3的SEM照片和YFeO3、Y0.6La0.4FeO3对应的EDS元素分布
图5  Y1-x La x FeO3 (x = 0,0.1,0.2,0.3,0.4)的相对复介电常数的实部、虚部、介电损耗以及相对复磁导率的实部、虚部和磁损耗
图6  不同厚度的Y1-x La x FeO3的3D、2D反射损耗以及La掺杂YFeO3晶体结构的球棍模型
Parameterx = 0x = 0.1x = 0.2x = 0.3x = 0.4
RLmin / dB-18.00-30.61-27.84-35.63-33.55
Thickness / mm1.81.64.21.61.8
Bandwidth (RL -10 dB) / GHz1.181.701.832.841.64
Thickness / mm1.61.61.61.61.6
表3  Y1-x La x FeO3 (x = 0,0.1,0.2,0.3,0.4)的反射损耗(RL)参数
图7  Y1-x La x FeO3 (x = 0.1,0.2,0.3,0.4)的阻抗匹配系数(Z)和衰减常数(α)
[1] Haq A U, Reddy N S K. A brief review on various high energy absorbing materials [J]. Mater. Today Proc., 2021, 38: 3198
[2] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48(3): 788
[3] Huang M L, Luo C L, Sun C, et al. Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance [J]. J. Mater. Sci. Technol., 2024, 178: 201
doi: 10.1016/j.jmst.2023.08.052
[4] Chen C, Pan L M, Jiang S C, et al. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites [J]. J. Eur. Ceram. Soc., 2018, 38(4): 1639
[5] Huang L, Cheng L C, Pan S K, et al. Influence of A-site doping barium on structure, magnetic and microwave absorption properties of LaFeO3 ceramics powders [J]. J. Rare Earths, 2022, 40(7): 1106
[6] Coutinho P V, Cunha F, Barrozo P. Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: a comparative study [J]. Solid State Commun., 2017, 252: 59
[7] Goldschmidt V M. Die Gesetze der Krystallochemie [J]. Naturwissenschaften, 1926, 14: 477
[8] Bharadwaj P S J, Kundu S, Kollipara V S, et al. Structural, optical and magnetic properties of Sm3+ doped yttrium orthoferrite (YFeO3) obtained by sol-gel synthesis route [J]. J. Phys.-Condes. Matter, 2020, 32(3): 035810
[9] Yuan X P, Sun Y, Xu M X. Effect of Gd substitution on the structure and magnetic properties of YFeO3 ceramics [J]. J. Solid State Chem., 2012, 196: 362
[10] Wang M, Cheng L C, Huang L, et al. Effect of Sr doped the YFeO3 rare earth ortho-ferrite on structure, magnetic properties, and microwave absorption performance [J]. Ceram. Int., 2021, 47(24): 34159
doi: 10.1016/j.ceramint.2021.08.325
[11] Zhang Q, Zhu X H, Xu Y H, et al. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1- x La x FeO3 ceramics [J]. J. Alloy. Compd., 2013, 546: 57
[12] Kumar M, Sati P C, Chhoker S. Electron spin resonance study and improved magnetic and dielectric properties of Gd-Ti co-substituted BiFeO3 ceramics [J]. J. Mater. Sci. Mater. Electron., 2014, 25: 5366
[13] Zubar T I, Fedosyuk V M, Trukhanov A V, et al. Control of growth mechanism of electrodeposited nanocrystalline NiFe films [J]. J. Electrochem. Soc., 2019, 166(6): D173
[14] Deng Y F, Zheng Y, Zhang D F, et al. A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: electromagnetic wave absorption with wide bandwidth [J]. Carbon, 2020, 169: 118
[15] Selbach S M, Tolchard J R, Fossdal A, et al. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction [J]. J. Solid State Chem., 2012, 196: 249
[16] Coppens P, Eibschütz M. Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite [J]. Acta Crystallogr., 1965, 19(4): 524
[17] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallogr., 1976, 32A(5) : 751
[18] Liu M J, Liu Y H, Guo H C, et al. A facile way to enhance microwave absorption properties of rGO and Fe3O4 based composites by multi-layered structure [J]. Composites, 2021, 146A: 106411
[19] Tong G X, Wu W H, Guan J G, et al. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties [J]. J. Alloy. Compd., 2011, 509(11): 4320
[20] Ishaque M, Islam M U, Khan M A, et al. Structural, electrical and dielectric properties of yttrium substituted nickel ferrites [J]. Physica, 2010, 405B(6) : 1532
[21] Yang W Y, Zhang Y F, Qiao G Y, et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17- x Si x and their composites [J]. Acta Mater., 2018, 145: 331
[22] Huang L, Cheng L C, Pan S K, et al. Effects of Sr doping on the structure, magnetic properties and microwave absorption properties of LaFeO3 nanoparticles [J]. Ceram. Int., 2020, 46(17): 27352
doi: 10.1016/j.ceramint.2020.07.220
[23] Bi S, Su X J, Li J, et al. High-temperature dielectric properties and microwave absorption abilities of Bi1- x Mg x FeO3 nanoparticles [J]. Ceram. Int., 2017, 43(15): 11815
[24] Zhao J H, Liu L, Jiang R L, et al. Dielectric relaxation and magnetic resonance in microwave absorption performance of Co x Fe3- x O4 (0 ≤ x ≤ 1) nanocrystals [J]. Ceram. Int., 2019, 45(15): 18347
[25] Jazirehpour M, Ebrahimi S A S. Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles [J]. J. Alloy. Compd., 2015, 638: 188
[26] Narang S B, Kaur P, Bahel S, et al. Microwave characterization of Co-Ti substituted barium hexagonal ferrites in X-band [J]. J. Magn. Magn. Mater., 2016, 405: 17
[27] Garg A, Goel S, Dixit A K, et al. Investigation on the effect of neodymium doping on the magnetic, dielectric and microwave absorption properties of strontium hexaferrite particles in X-band [J]. Mater. Chem. Phys., 2021, 257: 123771
[28] Yang C M, Jiang J J, Liu X H, et al. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination- oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties [J]. J. Magn. Magn. Mater., 2016, 404: 45
[29] Bora P J, Porwal M, Vinoy K J, et al. Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix [J]. Mater. Res. Express, 2016, 3(9): 095003
[1] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[2] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[3] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[4] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[7] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[8] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[12] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[13] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[14] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[15] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.