Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 463-473    DOI: 10.11901/1005.3093.2024.290
  研究论文 本期目录 | 过刊浏览 |
油页岩灰基磁性分子筛的制备及其对亚甲基蓝的吸附性能
段玉1, 王倩1(), 刘宏臣1, 车远军1, 石磊1, 白慧娟2()
1.西安工程大学环境与化学工程学院 西安 710048
2.中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室 北京 100190
Methylene Blue Adsorption Performance of Magnetic Zeolite Prepared from Oil Shale Ash
DUAN Yu1, WANG Qian1(), LIU Hongchen1, CHE Yuanjun1, SHI Lei1, BAI Huijuan2()
1.School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2.CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

段玉, 王倩, 刘宏臣, 车远军, 石磊, 白慧娟. 油页岩灰基磁性分子筛的制备及其对亚甲基蓝的吸附性能[J]. 材料研究学报, 2025, 39(6): 463-473.
Yu DUAN, Qian WANG, Hongchen LIU, Yuanjun CHE, Lei SHI, Huijuan BAI. Methylene Blue Adsorption Performance of Magnetic Zeolite Prepared from Oil Shale Ash[J]. Chinese Journal of Materials Research, 2025, 39(6): 463-473.

全文: PDF(1261 KB)   HTML
摘要: 

以油页岩灰为原料用碱熔水热法制备了Fe3O4@NaX型磁性分子筛并用于吸附亚甲基蓝(MB),研究了在不同条件下这种分子筛对MB的吸附性能并揭示其机理。结果表明:在2.0% Fe3O4@NaX (质量分数)型磁性分子筛用量为1 g/L、溶液的初始pH值为5.7、MB溶液的初始浓度为50 mg/L、吸附温度为25 ℃的条件下,分子筛对MB吸附60 min,MB的吸附率和平衡吸附量分别为96.98%和45.19 mg/g。这种分子筛在外磁场作用下能使染料溶液快速分离,且其再生重复使用的性能较好。Fe3O4@NaX型分子筛对MB的吸附遵循拟二级动力学和Langmuir等温线模型,是一个自发和放热的熵减过程。静电引力、氢键和孔隙扩散是吸附的主要推动力。

关键词 材料合成与加工工艺磁性分子筛碱熔水热法吸附油页岩灰亚甲基蓝    
Abstract

Fe3O4@NaX magnetic zeolite was prepared via alkaline fusion hydrothermal method with Fe3O4 particles and Beipiao oil shale ash as raw material, aiming to making magnetic absorbent substance for absorbing methylene blue (MB) from waste water. The adsorption performance of the magnetic zeolite for MB were studied in various processing conditions, and the adsorption mechanism was revealed. The results show that the removal efficiency and equilibrium adsorption capacity of 2.0% Fe3O4@NaX (mass fraction) zeolite for MB were 96.98% and 45.19 mg/g, respectively, in the following adsorption conditions: zeolite dosage of 1 g/L, initial pH of 5.7 of the solution, initial MB concentration of 50 mg/L, adsorption temperature of 25 °C and adsorption time of 60 min. The magnetic zeolite can be separated rapidly from dye solution by an applied external magnetic field, indicating its excellent recyclability. The MB adsorption on the zeolite is a spontaneous and exothermic process of entropy reduction, which follows the pseudo-second-order kinetics and Langmuir isotherm models. The electrostatic attraction, hydrogen bonds and pore diffusion are the main driving forces of the adsorption process.

Key wordssynthesizing and processing technics for materials    magnetic zeolite    alkaline fusion hydrothermal method    adsorption    oil shale ash    methylene blue
收稿日期: 2024-06-27     
ZTFLH:  TQ09  
基金资助:国家自然科学基金(22008187);国家自然科学基金(22208256);国家自然科学基金(22308269)
通讯作者: 王倩,shangjinzhe@163.com,研究方向为油页岩结构研究及其高值利用;
白慧娟,副研究员,huijuanbai@ipe.edu.cn,研究方向为多功能材料设计及应用
Corresponding author: WANG Qian, Tel: 13263280805, E-mail: shangjinzhe@163.com;
BAI Huijuan, Tel: 18811036008, E-mail: huijuanbai@ipe.edu.cn
作者简介: 段 玉,女,2000年生,硕士生
SiO2Al2O3CaOFe2O3K2OMgOSO3Bal.
60.0814.389.135.083.663.222.092.35
表1  BPA的化学组成
图1  BPA的XRD谱
图2  NaX分子筛的XRD谱和FTIR谱
图3  不同Fe3O4负载量的Fe3O4@NaX型分子筛的XRD谱
图4  NaX和Fe3O4@NaX型分子筛的SEM照片
图5  Fe3O4@NaX型分子筛的TEM照片和选定区域的元素分布
图6  Fe3O4负载量不同的Fe3O4@NaX型分子筛对MB的吸附率
图7  2.0% Fe3O4@NaX型分子筛的磁滞回线
图8  Fe3O4@NaX型分子筛的N2吸附-脱附等温线和孔径分布
图9  吸附条件对分子筛吸附性能的影响
图10  几种盐和盐度对分子筛吸附MB的影响
AdsorbentsTime / minDosage / g·L-1Initial concentration / mg·L-1pH valueTemperature / oCAdsorption capacity / mg·g-1Ref.
Fe3O4@NaX60150Natural2545.19This work
WO330.0515NaturalNatural1.64[25]
Zeolite HY-Fe3O4 from Zeolite HY and Fe3O4401.18610.23953.93.24[26]
Natural zeolite from Sigmae-Aldrich1200.620Natural259.19[27]
A mixture of zeolite A and P synthesized from electrolytic manganese residue200620064033.57[28]
Zeo-FPT400.5108250.438[29]
Magnetic graphene oxide2400.1545925306.5[30]
Fe3O4@UIO-66-NH2900.00449Natural9.53[31]
表2  不同吸附剂对MB的吸附性能
ModelsTemperature25 oC35 oC45 oC55 oC65 oC
Experimentqe,exp / mg·g-147.8045.0752.3852.3850.94
Pseudo-first-orderqe,cal / mg·g-15.644.684.023.804.41
k1 / min-10.01150.00940.00850.00420.0041
R20.61080.45930.24640.30320.2157
Pseudo-second-orderqe,cal / mg·g-146.3243.4250.6349.8547.78
k2 / g·mg-1·min-10.02370.03390.05990.12420.6337
R20.99990.99990.99990.99990.9997
Intraparticle diffusionc / mg·g-139.5037.9845.7647.6445.48
kp / mg·g-1·min-1/20.01150.00940.00850.00420.0041
R20.60790.47970.41300.48760.4487
表3  Fe3O4@NaX型分子筛吸附MB的动力学参数
LangmuirFreundlichDubinin-Radushkevich

qm

/ mg·g-1

KL

/ L·mg-1

R2

KF

/ mg·g-1

nR2

qm

/ mg·g-1

KDR

/ mol2·J-2

R2
57.33941.69980.999734.14611.94090.949542.67025.32×10-80.9734
表4  Fe3O4@NaX型分子筛吸附MB的等温线参数
Temperature / KKcΔG / kJ·mol-1ΔH / kJ·mol-1ΔS / J·mol-1·K-1
298.1532.1413-8.6019-16.3922-26.1432
308.1526.4178-8.3880
318.1524.4721-8.2136
328.1516.9428-7.7205
338.1512.8492-7.1782
表5  Fe3O4@NaX型分子筛吸附MB的热力学参数
图11  Fe3O4@NaX型分子筛吸附前后的XPS谱
图12  Fe3O4@NaX型分子筛吸附前后的FTIR谱
图13  Fe3O4@NaX型分子筛吸附MB的机理
图14  Fe3O4@NaX型分子筛的可重复利用性能和洗脱前后的XRD谱
1 Liu Z J, Ma H T, Wang Z, et al. Experimental study on the thermophysical properties of Jimsar oil shale[J]. Oil Shale, 2023, 40(3): 194
2 Bai S X, Chu M, Zhou L M, et al. Modified oil shale ash and oil shale ash zeolite for the removal of Cd2+ ion from aqueous solutions[J]. Environ. Technol., 2019, 40(11): 1485
3 Hamadi A, Nabih K. Alkali activation of oil shale ash based ceramics[J]. E-J. Chem., 2012, 9(3): 1373
4 Ilman H S N M, Panatarani C, Faizal F, et al. Synthesis of mesoporous silica SBA-15 from geothermal sludge[J]. Materialia, 2023, 27: 101637
5 Shawabkeh R, Al-Harahsheh A, Hami M, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel, 2004, 83(7-8): 981
6 Bao W W, Zou H F, Gan S C, et al. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: kinetic and equilibrium studies[J]. Chem. Res. Chin. Univ., 2013, 29(1): 126
7 Piri F, Mollahosseini A, Khadir A, et al. Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite[J]. J. Environ. Chem. Eng., 2019, 7(5): 103338
8 Liu H Q, Wu Y J, Yang Y, et al. Adsorption and recovery of low concentration coal-bed methane by zeolite ZSM-5[J]. CIESC J., 2016, 67(5): 1931
doi: 10.11949/j.issn.0438-1157.20151684
8 刘海庆, 吴一江, 杨 颖 等. 沸石ZSM-5吸附回收低浓度煤层气中CH4 [J]. 化工学报, 2016, 67(5): 1931
doi: 10.11949/j.issn.0438-1157.20151684
9 Tehubijuluw H, Subagyo R, Yulita M F, et al. Utilization of red mud waste into mesoporous ZSM-5 for methylene blue adsorption-desorption studies[J]. Environ. Sci. Pollut. Res., 2021, 28(28): 37354
10 Cheng Y, Xu L J, Jiang Z, et al. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent[J]. Chem. Eng. J., 2021, 417: 128090
11 Liu H B, Peng S C, Shu L, et al. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+ [J]. Chemosphere, 2013, 91(11): 1539
doi: 10.1016/j.chemosphere.2012.12.038 pmid: 23340053
12 Shi L, Wang Q, Zhao X S, et al. The methyl blue adsorption performance and mechanism of NaX zeolite synthesized from Huadian oil shale ash[J]. J. Taiwan Inst. Chem. Eng., 2023, 147: 104904
13 Rajabi S K, Sohrabnezhad S. Synthesis and characterization of magnetic core with two shells: mordenite zeolite and CuO to form Fe3O4@MOR@CuO core-shell: as a visible light driven photocatalyst[J]. Micropor. Mesopor. Mater., 2017, 242: 136
14 Zeidan H, Can M, Marti M E. Synthesis, characterization, and use of an amine-functionalized mesoporous silica SBA-15 for the removal of Congo Red from aqueous media[J]. Res. Chem. Intermed., 2023, 49(1): 221
15 Jia W L, Wang S Y, Deng Y Y, et al. Characterization and application of lamellar zeolite-X prepared from kaolin[J]. Micro Nano Lett., 2024, 19(1): e12182
16 Zhang M S, Wang S Y, Hu Z, et al. Synthesis and characterization of zeolite X obtained from coal gangue for adsorption of Cu2+ [J]. Sci. Adv. Mater., 2021, 13(8): 1512
17 Yan K Z, Zhang J Y, Liu D D, et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue: preparation, transformation and application[J]. Powder Technol., 2023, 423: 118495
18 Zhang T, Peng X L, Li J, et al. Structural, magnetic and electromagnetic properties of SrFe12O19 ferrite with particles aligned in a magnetic field[J]. J. Alloy. Compd., 2017, 690: 936
19 Singh P, Sharma K, Hasija V, et al. Systematic review on applicability of magnetic iron oxides-integrated photocatalysts for degradation of organic pollutants in water[J]. Mater. Today Chem., 2019, 14: 100186
20 Cao J, Sun Q, Wang P, et al. Synthesize and characterize of Fe3O4/zeolite 4A magnetic nanocomposite[J]. J. Dispersion Sci. Technol., 2022, 43(4): 517
21 Yan J S, Li Y, Li H R, et al. Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X[J]. Microchem. J., 2019, 145: 287
22 Awala H, Leite E, Saint-Marcel L, et al. Properties of methylene blue in the presence of zeolite nanoparticles[J]. New J. Chem., 2016, 40(5): 4277
23 Belachew N, Hinsene H. Preparation of zeolite 4A for adsorptive removal of methylene blue: optimization, kinetics, isotherm, and mechanism study[J]. Silicon, 2022, 14(4): 1629
doi: 10.1007/s12633-020-00938-9
24 Ioannou Z, Karasavvidis C, Dimirkou A, et al. Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites[J]. Water Sci. Technol., 2013, 67(5): 1129
doi: 10.2166/wst.2013.672 pmid: 23416607
25 Dadashi R, Bahram M, Farhadi K, et al. Photodecoration of tungsten oxide nanoparticles onto eggshell as an ultra-fast adsorbent for removal of MB dye pollutant[J]. Sci. Rep., 2024, 14(1): 14478
doi: 10.1038/s41598-024-65573-5 pmid: 38914725
26 Majid Z, Abdulrazak A A, Noori W A H. Modification of zeolite by magnetic nanoparticles for organic dye removal[J]. Arab. J. Sci. Eng., 2019, 44(6): 5457
27 Hor K Y, Chee J M C, Chong M N, et al. Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater[J]. J. Clean. Prod., 2016, 118: 197
28 Li C X, Zhong H, Wang S, et al. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. J. Ind. Eng. Chem., 2015, 23: 344
29 Alhogbi B G, Al Balawi G S. An investigation of a natural biosorbent for removing methylene blue dye from aqueous solution[J]. Molecules, 2023, 28(6): 2785
30 Guo Y F, Deng J, Zhu J Y, et al. Removal of mercury(II) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism[J]. RSC Adv., 2016, 6(86): 82523
31 Zhang Y M, Dai T L, Zhang F, et al. Fe3O4@UiO-66-NH2 core-shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation[J]. Chin. J. Catal., 2016, 37(12): 2106
31 张艳梅, 戴田霖, 张 帆 等. 核壳结构Fe3O4@UiO-66-NH2磁性纳米复合材料的合成及其催化Knoevenagel缩合反应性能[J]. 催化学报, 2016, 37(12): 2106
doi: 10.1016/S1872-2067(16)62562-7
32 Cao J S, Lin J X, Fang F, et al. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies[J]. Bioresour. Technol., 2014, 163: 199
33 Nezamzadeh-Ejhieh A, Karimi-Shamsabadi M. Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture[J]. Appl. Catal., 2014, 477: 83
34 Bai S X, Zhou L M, Chang Z B, et al. Synthesis of Na-X zeolite from Longkou oil shale ash by alkaline fusion hydrothermal method[J]. Carbon Resour. Convers., 2018, 1(3): 245
[1] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[2] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[3] 赵勇, 刘腾远, 贾春妮, 杨朕聃, 陈响军, 王培, 李殿中. 冷拉拔钢丝横截面应变不均匀性的晶体塑性研究[J]. 材料研究学报, 2024, 38(2): 81-91.
[4] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] 霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.
[6] 余谟鑫, 孙宇航, 史文旭, 张晨, 王晓婷. Fe掺杂磁性生物炭的制备及其对金属离子Ni2+Co2+ 的吸附性能[J]. 材料研究学报, 2024, 38(11): 849-860.
[7] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[8] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[11] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[12] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[13] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[14] 余谟鑫, 蒯乐, 王亮, 张晨, 王晓婷, 陈启厚. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能[J]. 材料研究学报, 2021, 35(9): 667-674.
[15] 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.