Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 849-860    DOI: 10.11901/1005.3093.2023.571
  研究论文 本期目录 | 过刊浏览 |
Fe掺杂磁性生物炭的制备及其对金属离子Ni2+Co2+ 的吸附性能
余谟鑫1,2, 孙宇航1, 史文旭1, 张晨1, 王晓婷1,3()
1 安徽工业大学化学与化工学院 马鞍山 243000
2 中钢天源股份有限公司 马鞍山 243000
3 马钢集团股份有限公司 马鞍山 243000
Preparation of Fe-doped Biochar and Its Adsorption Performance for Ni2+ and Co2+ Metal Ions
YU Moxin1,2, SUN Yuhang1, SHI Wenxu1, ZHANG Chen1, WANG Xiaoting1,3()
1 Anhui University of Technology, Ma'anshan 234000, China
2 Sinosteel New Materials Co., Ltd., Ma'anshan 234000, China
3 Magang (Group) Holding Co., Ltd., Ma'anshan 234000, China
引用本文:

余谟鑫, 孙宇航, 史文旭, 张晨, 王晓婷. Fe掺杂磁性生物炭的制备及其对金属离子Ni2+Co2+ 的吸附性能[J]. 材料研究学报, 2024, 38(11): 849-860.
Moxin YU, Yuhang SUN, Wenxu SHI, Chen ZHANG, Xiaoting WANG. Preparation of Fe-doped Biochar and Its Adsorption Performance for Ni2+ and Co2+ Metal Ions[J]. Chinese Journal of Materials Research, 2024, 38(11): 849-860.

全文: PDF(9626 KB)   HTML
摘要: 

使用芦荟青皮为碳源、FeSO4为Fe源,用共水热法制备炭前驱体,再将其高温热解(800℃)制备出磁性生物炭FSBC x-y。使用自动氮气吸附仪(BET)、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FTIR)、Zeta电位仪和X-射线光电子能谱仪(XPS)等手段对生物炭表征,研究其对废水中Ni2+和Co2+的吸附性能。结果表明,FSBC x-y 表面有分级多孔结构的层状堆叠。芦荟青皮与FeSO4质量比为3∶1的FSBC3-1其比表面积为82 m2·g-1,总孔体积为0.10 cm3·g-1。FSBC3-1表面有O,S和Fe等元素生成的丰富活性基团,其与Ni2+和Co2+发生离子交换、络合作用、共沉淀和静电吸附等反应。FSBC3-1的吸附等温线和吸附动力学符合Langmuir模型和拟二级动力学模型。根据Langmuir模型计算出FSBC3-1对Ni2+和Co2+的理论最大吸附量分别为136.43 mg·g-1和132.10 mg·g-1,以化学吸附为主。FSBC3-1对金属离子有较大的动态吸附容量。

关键词 无机非金属材料磁性生物炭芦荟青皮Fe掺杂金属离子化学吸附    
Abstract

The Fe-doped magnetic biochar FSBC x-y was prepared via high temperature pyrolysis at 800oC with Fe-doped carbon precursor as raw material. The Fe-doped carbon precursor was made via co-hydrothermal method with aloe green skin as carbon source and FeSO4 as Fe source. The as-made FSBC x-y was characterized by BET、SEM、FTIR、Zeta and XPS, and its application for adsorption of Ni2+ and Co2+ in waste water was investigated. The result showed that the FSBC x-y has a hierarchical porous structure with a lamellar-like surface with many small flakes. When the mass ratio of aloe green skin to FeSO4 was 3:1, the specific surface area of the as-made FSBC3-1 is 82 m2·g-1, and the total pore volume is 0.10 cm3·g-1. The surface of FSBC3-1 is rich in active groups of O, S and Fe, which can react with Ni2+ and Co2+ through ion exchange, electrostatic adsorption, complexation, co-precipitation and electrostatic adsorption. The adsorption isotherm and adsorption kinetics were more consistent with Langmuir model and pseudo-second-order kinetic model. According to the Langmuir model, the theoretical maximum adsorption capacities of Ni2+ and Co2+ by FSBC3-1 are 136.43 mg·g-1 and 132.10 mg·g-1 respectively, which are mainly chemical adsorption. Fixed bed experiment results show that FSBC3-1 has the high dynamic adsorption capacity for metal ions.

Key wordsinorganic non-metallic materials    magnetic biochar    aloe vera green skin    Fe dope    metal ions    chemical adsorption
收稿日期: 2023-11-29     
ZTFLH:  O647.3  
基金资助:安徽省博士后科研项目(2021B547);安徽省高校自然科学研究项目(KJ2021A0399)
通讯作者: 王晓婷,副教授,pingguo2911@sina.com,研究方向为煤基碳材料
Corresponding author: WANG Xiaoting, Tel: 13855518820, E-mail: pingguo2911@sina.com
作者简介: 余谟鑫,男,1978年生,副教授
图1  FSBC x-y 的SEM照片
SamplesDap / nmSBET / m2·g-1Smic / m2·g-1Vt / cm3·g-1Vmic / cm3·g-1Non-Vmic / Vt
FSBC1-15.71126910.150.060.60
FSBC2-16.5572470.100.030.70
FSBC3-14.6982560.100.040.60
FSBC3-1-Ni2+5.55123720.170.060.65
FSBC3-1-Co2+5.75108710.130.050.62
表 1  FSBC x-y 的比表面积和孔结构参数
图2  FSBC x-y 的N2吸脱附曲线图和孔径分布图
图3  FSBC3-1的FTIR图
图4  FSBC3-1的Zeta电位图
图5  FSBC3-1的全谱图
SamplesC1sO1sS2pFe2pNi2pCo2p
FSBC3-187.2011.101.000.70--
FSBC3-1-Ni2+27.3027.705.503.7035.80-
FSBC3-1-Co2+29.3034.709.700.80-25.5
表2  XPS分析元素摩尔分数
图6  FSBC3-1的O1s谱图
sampleC-OC=O-OHS2-S-SO32-SO32-Fe2+Fe3+
FSBC3-169.5522.258.209.108.7953.7153.7149.9050.10
FSBC3-1-Ni2+44.7333.4621.8110.9011.5045.7045.7054.7045.30
FSBC3-1-Co+36.6537.7525.6012.8016.2044.1044.1051.4048.60
表3  XPS分析中O1s、N1s和Co2p谱图的官能团摩尔分数
图7  FSBC3-1的S2p谱图
图8  FSBC3-1的Fe2p谱图
图9  FSBC3-1的VSM图
图10  FSBC x-y 的吸附等温线
图11  FSBC x-y 的Langmuir拟合模型
图12  FSBC x-y 的去除率
图13  FSBC x-y 的吸附动力学
图14  FSBC x-y 的吸附动力学拟合图
图15  FSBC3-1吸附穿透曲线
图16  FSBC3-1的再生吸附效率图
图17  溶液的pH值对FSBC3-1吸附的影响
图18  FSBC3-1的金属离子竞争吸附图
Metal ionSingleBinaryTernary
Ni2+-Co2+Ni2+-Zn2+Co2+-Zn2+Ni2+-Co2+-Zn2+
Ni2+0.740.390.17-0.08
Co2+0.760.34-0.060.16
Zn2+--0.580.490.45
表4  FSBC3-1的金属离子竞争吸附分配系数
图19  FSBC x-y 的吸附机理
1 Zhu J S, Lu H, Song J N. Fabrication of EVOH/PANI composite nanofibrous aerogels for the removal of dyes and heavy metal ions [J]. Materials, 2023, 16(6): 2393
2 Baby R, Hussein M Z. ecofriendly approach for treatment of heavy-metal-contaminated water using activated carbon of kernel shell of oil palm [J]. Materials, 2020, 13(11): 2627
3 Zhao X Y, Baharinikoo L, Farahani M D, et al. Experimental modelling studies on the removal of dyes and heavy metal ions using ZnFe2O4 nanoparticles [J]. Sci. Rep., 2022, 12: 5987
4 Cai L Q, Ying D F, Liang X C, et al. A novel cationic polyelectrolyte microsphere for ultrafast and ultra-efficient removal of heavy metal ions and dyes [J]. Chem. Eng. J., 2021, 410: 128404
5 Soroush S, Mahmoodi N M, Mohammadnezhad B, et al. Activated carbon (AC)-metal-organic framework (MOF) composite: Synthesis, characterization and dye removal [J]. Korean J. Chem. Eng., 2022, 39(9): 2394
6 Baziar M, Zakeri H R, Askari S G, et al. Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies [J]. J. Mol. Liq., 2021, 332: 115832
7 Awasthi A, Arya A, Gupta P, et al. Adsorption of reactive blue-13, an acidic dye, from aqueous solution using magnetized activated carbon [J]. J. Chem. Eng. Data, 2020, 65(4): 2220
8 Patil Y, Attarde S, Dhake R, et al. Adsorption of congo red dye using metal oxide nano-adsorbents: Past, present, and future perspective [J]. In. J. Chem. Kinet., 2023, 55(10): 577
9 Kumar S, Kumari K, Saurabh K, et al. Amorphous tetrazine-triazine-functionalized covalent organic framework for adsorption and removal of dyes [J]. New J. Chem., 2023, 47(29): 13676
10 Bayramoglu G, Kunduzcu G, Arica M Y. Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes [J]. Polym. Eng. Sci., 2020, 60(1): 192
doi: 10.1002/pen.25272
11 Assileva P, Tumbalev V, Kichukova D, et al. Study on the dye removal from aqueous solutions by graphene-based adsorbents [J]. Materials, 2023, 16(17): 5754
12 Elkady M, Shokry H, Hamad H. New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater [J]. Materials, 2020, 13(11): 2498
13 Liang M, Lu L, He H, et al. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review [J]. Sustainability, 2021, 13(24): 14041
14 Qiu B B, Shao Q N, Shi J C, et al. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges [J]. Sep. Purif. Technol., 2022, 300: 121925
15 Queiroz L S, Souza L K, Thomaz K T C, et al. Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water [J]. J. Environ. Manage., 2020, 270: 110868
16 Fita G, Djakba R, Mouhamadou S, et al. Adsorptive efficiency of hull-based activated carbon toward copper ions (Cu2+) removal from aqueous solution: Kinetics, modelling and statistical analysis [J]. Diam. Relat. Mater., 2023, 139: 110421
17 Vunain E, Njewa J B, Biswick T T, et al. Timothy Tiwonge Biswick, adsorption of chromium ions from tannery efuents onto activated carbon prepared from rice husk and potato peel by H3PO4 activation [J]. Appl. Water Sci., 2021, 11: 150
18 Dao M T, Nguyen T, Nguyen X, et al. Toxic metal adsorption from aqueous solution by activated biochars produced from macadamia nutshell waste [J]. Sustainability, 2020, 12(19): 7909
19 Hashemzadeh F, Ariannezhad M, Derakhshandeh S H. Evaluation of cephalexin and amoxicillin removal from aqueous media using activated carbon produced from aloe vera leaf waste [J]. Chem. Phys. Lett., 2022, 800: 139656
20 Prajapati A K, Das S, Mondal M K. Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of aloe vera waste leaves [J]. J. Mol. Liq., 2020, 307:112956
21 Zhao Q S, Xu T, Song X P, et al. Preparation and application in water treatment of magnetic biochar [J]. Front..Bioeng. Biotech., 2021, 9: 769667
22 Qu J H, Shi J J, Wang Y H, et al. Applications of functionalized magnetic biochar in environmental remediation: A review [J]. J. Hazard. Mater., 2022, 434: 128841
23 Phoungthong K, Suwunwong T. Magnetic biochar derived from sewage sludge of concentrated natural rubber latex (CNRL) for the removal of Al3+ and Cu2+ ions from wastewater [J]. Res. Chem. Intermediat., 2020, 46: 385
doi: 10.1007/s11164-019-03956-4
24 Devi B, Baruah N P, Bharadwaj A, et al. Adsorptive removal of fluoride ions from aqueous solution using activated carbon supported tetrametallic oxide system [J]. Chem. Eng. Res. Des., 2023, 197:380
[1] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[2] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[3] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[4] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[5] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[6] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[7] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[9] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[10] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[11] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[12] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[13] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[14] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[15] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.