Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (3): 185-197    DOI: 10.11901/1005.3093.2024.310
  研究论文 本期目录 | 过刊浏览 |
氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响
王静(), 何文政, 杨爽, 耿闻, 任荣, 熊需海
沈阳航空航天大学材料科学与工程学院 辽宁省先进聚合物基复合材料制备技术重点实验室 沈阳 110136
Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites
WANG Jing(), HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai
Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
Jing WANG, Wenzheng HE, Shuang YANG, Wen GENG, Rong REN, Xuhai XIONG. Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites[J]. Chinese Journal of Materials Research, 2025, 39(3): 185-197.

全文: PDF(5156 KB)   HTML
摘要: 

用氩气等离子体处理芳Ⅲ纤维的表面,将处理前后的芳Ⅲ纤维和环氧树脂制备单丝复合材料。使用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、光学显微镜(OM)、原子力显微镜(AFM)、动态接触角分析(DCAA)、单丝拉伸强度以及微滴脱粘测试等手段对其表征,研究了氩气等离子体处理对纤维表面的元素组成、表面形貌、表面浸润性能、单丝拉伸强度以及复合材料界面强度的影响,并使用Materials Studio (MS)软件计算了纤维的结构解离能。结果表明,等离子体处理5~30 min在纤维表面引入了新的基团(―C―O―、O=C―O、―NH2)、纤维表面的粗糙度由134 nm提高到214 nm、纤维表面的浸润性能由46.14 mJ/m2提高到68.52 mJ/m2、纤维表面形貌出现凹凸不平并随着处理时间的延长呈现周期性变化;随着等离子体处理时间的延长,纤维的单丝拉伸强度缓慢降低,用等离子体处理10 min的芳纶Ⅲ/环氧的界面剪切强度(IFSS)由28.51 MPa提高到38.02 MPa。

关键词 材料表面与界面界面性能氩气等离子体芳纶纤维    
Abstract

Domestically produced Aramid fiber III are extensively utilized in aerospace and other military industries on account of their advantages like high specific strength and high specific modulus. Nevertheless, the drawbacks of its smooth surface, scarcity of active groups, and poor bonding performance with the resin matrix restrict the outstanding performance of its composite materials. In view of the above shortcomings, the surface of AF III was modified via argon plasma, and then monofilament composites of epoxy resin with the untreated and argon plasma treated aramid fiber III was fabricated respectively. The influence of argon plasma treatment time on the surface composition, surface morphology, surface wetting properties, monofilament tensile strength of the fiber and the interfacial bonding strength of composite material were investigated respectively by X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Optical Microscopy (OM), Atomic Force Microscopy (AFM), Dynamic Contact Angle Analyzer (DCAA), Monofilament Tensile Strength and Micro-droplet Debonding Test, as well as interface strength test. The structural dissociation energy of the plasma-treated fiber was calculated using Materials studio (MS) software. The results indicated that after plasma treatment for 5 min~30 min, new groups (―C―O―, O=C―O, ―NH2) were introduced on the fiber surface; while the fiber surface roughness increased from 134 nm untreated to 214 nm; and the fiber surface wettability property was enhanced from 46.14 mJ/m2 for the bare fiber to 68.52 mJ/m2 for the argon plasma treated one, representing an increase of 48.44%. The surface of plasma treated fibers showed uneven morphology and changed periodically with the extension of treatment time; the strength of fiber monofilament decreased gradually with the increasing plasma treatment time. Besides the results of the microdroplet debonding test demonstrated that, after plasma treatment for 10 min, the interfacial shear strength (IFSS) of AF III/epoxy was increased from 28.51 MPa for the untreated fiber to 38.02 MPa for the treated one, which was improved by 33.36%.

Key wordssurface and interface in the materials    interface performance    argon plasma    aramid fiber
收稿日期: 2024-07-17     
ZTFLH:  TB324  
基金资助:国家自然科学基金(51403129);航空科学基金(2024Z048054002)
通讯作者: 王静,副教授,jingwang_1217@126.com,研究方向为航空复合材料
Corresponding author: WANG Jing, Tel: 13840156479, E-mail:jingwang_1217@126.com
作者简介: 王静,1981年生,博士
图1  芳Ⅲ纤维(F-368)的化学结构式
图2  芳Ⅲ/环氧复合材料的制备和测试
Liquidγl / (mJ·m-2)γlp / (mJ·m-2)γld / (mJ·m-2)
Water72.353.618.7
Diiodomethane502.647.4
表1  水和二碘甲烷的表面能
图3  氩气等离子体处理后芳Ⅲ的XPS全谱扫描结果
图4  氩气等离子体处理后芳Ⅲ的C1s分峰谱
图5  氩气等离子体处理后芳Ⅲ表面N1s分峰谱
图6  氩气等离子体处理后芳Ⅲ表面的O1s分峰谱
图7  氩气等离子体处理后芳Ⅲ的AFM
图8  氩气等离子体处理不同时间后芳Ⅲ的拉伸强度
图9  氩气等离子体处理后芳Ⅲ 的动态接触角和表面能
图10  微滴脱粘
图11  芳Ⅲ/环氧微滴脱粘显微镜照片
图12  微滴脱粘前后芳Ⅲ的SEM图像
图13  计算芳Ⅲ中解离能的化学键位置
NumberChemical bondBond energy
1C―N467.49
2C―N466.09
3C―C412.94
4C―N335.89
5C―N458.13
6C―C517.59
7C―N859.41
8C―N436.38
9C―C410.09
10C―C426.14
11C―H492.79
12C―N331.08
13C―H501.19
14C―H488.76
15C―N802.54
16N―H384.53
17C―N342.76
18C―H501.96
表2  芳Ⅲ的解离能
图14  氩气等离子体处理芳Ⅲ时可能发生的反应
1 Zhang B, Jia L H, Tian M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review [J]. Eur. Polym. J., 2021, 147: 110352
2 Cheng Z, Zhang L J, Chan J, et al. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range [J]. Chem. Eng. J., 2018, 347: 483
3 Qi G C, Zhang B M, Du S Y. Assessment of F-Ⅲ and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens [J]. Compos. Part A Appl. Sci. Manuf., 2018, 112: 549
4 Cheng Z, Li X, Lv J W, et al. Constructing a new tear-resistant skin for aramid fiber to enhance composites interfacial performance based on the interfacial shear stability [J]. Appl. Surf. Sci., 2021, 544: 148935
5 Li S S, Shang S J, Wang N N, et al. Research progress on interfacial modification technology of para-aramid fiber [J]. Acta Mater. Compos. Sin., 2025, 42(3): 1186
5 李杉杉, 尚诗杰, 王娜娜 等. 对位芳纶纤维界面改性技术研究进展 [J]. 复合材料学报, 2025, 42(3): 1186
6 Wang J, Ren H, Chen P, et al. Surface properties of domesic aramid fiber III modified by oxygen plasma treatment [J]. Chin. J. Mater. Res., 2018, 32(1): 12
doi: 10.11901/1005.3093.2017.191
6 王 静, 任 航, 陈 平 等. 氧等离子体处理对国产芳III纤维表面性能的影响 [J]. 材料研究学报, 2018, 32(1): 12
7 De la parra S, Miguel Á, Fernández-pampín N, et al. High-performance aramids with intrinsic bactericide activity. [J]. ACS Appl. Mater. Interfaces, 2024, 16: 9293
8 Shi Y F, Tuo X L. Synthesis of heterocyclic aramid nanofibers and high performance nanopaper [J]. Adv. Mater., 2020, 1(4): 595
9 Xiong J H, Ding R J, Liu Z L, et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management [J]. Chem. Eng. J., 2023, 474: 145972
10 Wu W W, Song Q Q, Li N, et al. Lightweight, robust, porous heterocyclic para-aramid aerogel hollow fibers for multifunctional applications [J]. J. Appl. Polym. Sci., 2024, 141(9): 55034
11 Yan D, Luo J J, Wang S J, et al. Carbon nanotube‐directed 7 GPa heterocyclic aramid fiber and its application in artificial muscles [J]. Adv. Mater., 2023, 36(22): 2306129
12 Li J Q, Wen Y Y, Xiao Z H, et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance [J]. Adv. Funct. Mater., 2022, 32(42): 2200937
13 Song J Y, Chen C F, Du X, et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate [J]. Polym. Compos., 2023, 44(4): 2557
14 Nasser J, Lin J J, Steinke K, et al. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings [J]. Compos. Sci. Technol., 2019, 174: 125
doi: 10.1016/j.compscitech.2019.02.025
15 Zhou N, Xia L, Jiang N Y, et al. Enhanced interfacial bonding of AF/PEEK composite based on CNT/aramid nanofiber multiscale flexible-rigid structure [J]. J. Mater. Sci. Technol., 2024, 197: 139
doi: 10.1016/j.jmst.2024.02.015
16 Zhao J. Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid [J]. Fibers Polym., 2013, 14: 59
17 Jia C Y, Zhang R Z, Yuan C C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite [J]. Polym. Compos., 2020, 41(5): 2046
18 Yin L P, Zhou Z T, Luo Z, et al. Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites [J]. Polym. Test., 2019, 80: 106092
19 Rodríguez-Uicab O, Avilés F, Gonzalez-Chi P I, et al. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers [J]. Appl. Surf. Sci., 2016, 385: 379
20 Gonzalez-Chi P I, Rodríguez-Uicab O, Martin-Barrera C, et al. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites [J]. Compos. Part B-Eng., 2017, 122: 16
21 Cheng Z, Li B Y, Huang J Y, et al. Covalent modification of Aramid fibers' surface via direct fluorination to enhance composite interfacial properties [J]. Mater. Des., 2016, 106: 216
22 Gong X Y, Liu Y Y, Huang M N, et al. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites [J]. Compos. Commun., 2022, 29: 100996
23 Moosburger-will J, Lachner E, Löffler M, et al. Adhesion of carbon fibers to amine hardened epoxy resin: Influence of ammonia plasma functionalization of carbon fibers [J]. Appl. Surf. Sci., 2018, 453: 141
24 Jethva S, Bhabhor F, Patil C, et al. Studies of physio-chemical changes of dielectric barrier discharge plasma treated aramid fibers [J]. Vacuum, 2023, 215: 112313
25 Xu H, Xue J X, Bian H Get al. Green, simple, and rapid construction of coating on aramid fiber surfaces and their effects on the mechanical properties of aramid fiber/rubber composite interfaces [J]. J. Clean. Prod., 2024, 466: 142867
26 Zang H, Wang Z, Qin S, et al. Multifunctional and ultrastrong MXene modified aramid fibers [J]. Mater. Today Chem., 2023, 33: 101674
27 Cao Y Z, Hua H M, Yang P, et al. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose [J]. Carbohydr. Polym., 2020, 233: 115632
28 Gu R Q. Research on the application of dielectric barrier discharge low temperature technique in surface modification of para-aramid fibers [D]. Shanghai: Donghua University, 2013
28 顾如茜. 采用介质阻挡放电低温等离子体技术改性对位芳纶表面 [D]. 上海: 东华大学, 2013
29 Wang R X, Shen Y, Zhang C, et al. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface [J]. Appl. Surf. Sci., 2016, 367: 401
30 Narimisa M, Onyshchenko Y, Morent R, et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases [J]. Polym., 2021, 215: 123421
31 Kumar A, Škoro N, Gernjak W, et al. Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source [J]. Sci. Total Environ., 2023, 864: 161194
32 Peng C Y, Wu J S, Tsai C H D. Wettability distribution on the surface treated by plasma jet at different flow rates for microfluidic applications [J]. IEEE Trans. Plasma Sci., 2020, 49(1): 168
33 Abdel-fattah E. Surface activation of poly (methyl methacrylate) with atmospheric pressure Ar + H2O plasma [J]. Coatings, 2019, 9(4): 228
34 Wang M, Wang J, Liang J, et al. Strengthening the interface between individual aramid fibers and polymer at room and elevated temperatures [J]. Mater. Today Commun., 2020, 24: 101254
35 Dsouza R, Antunes P, Kakkonen M, et al. 3D interfacial debonding during microbond testing: Advantages of local strain recording [J]. Compos. Sci. Technol., 2020, 195: 108163
36 Bellil S, Pantaloni D, Shah D U, et al. Prediction of interfacial behaviour of single flax fiber bonded to various matrices by simulation of microdroplet test [J]. JCOMC., 2023, 11: 100351
[1] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[2] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[3] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[4] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[5] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[6] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[7] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[8] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[9] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
[10] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[11] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[12] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[13] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[14] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[15] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.