|
|
氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响 |
王静( ), 何文政, 杨爽, 耿闻, 任荣, 熊需海 |
沈阳航空航天大学材料科学与工程学院 辽宁省先进聚合物基复合材料制备技术重点实验室 沈阳 110136 |
|
Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites |
WANG Jing( ), HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai |
Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
Jing WANG,
Wenzheng HE,
Shuang YANG,
Wen GENG,
Rong REN,
Xuhai XIONG.
Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites[J]. Chinese Journal of Materials Research, 2025, 39(3): 185-197.
1 |
Zhang B, Jia L H, Tian M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review [J]. Eur. Polym. J., 2021, 147: 110352
|
2 |
Cheng Z, Zhang L J, Chan J, et al. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range [J]. Chem. Eng. J., 2018, 347: 483
|
3 |
Qi G C, Zhang B M, Du S Y. Assessment of F-Ⅲ and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens [J]. Compos. Part A Appl. Sci. Manuf., 2018, 112: 549
|
4 |
Cheng Z, Li X, Lv J W, et al. Constructing a new tear-resistant skin for aramid fiber to enhance composites interfacial performance based on the interfacial shear stability [J]. Appl. Surf. Sci., 2021, 544: 148935
|
5 |
Li S S, Shang S J, Wang N N, et al. Research progress on interfacial modification technology of para-aramid fiber [J]. Acta Mater. Compos. Sin., 2025, 42(3): 1186
|
5 |
李杉杉, 尚诗杰, 王娜娜 等. 对位芳纶纤维界面改性技术研究进展 [J]. 复合材料学报, 2025, 42(3): 1186
|
6 |
Wang J, Ren H, Chen P, et al. Surface properties of domesic aramid fiber III modified by oxygen plasma treatment [J]. Chin. J. Mater. Res., 2018, 32(1): 12
doi: 10.11901/1005.3093.2017.191
|
6 |
王 静, 任 航, 陈 平 等. 氧等离子体处理对国产芳III纤维表面性能的影响 [J]. 材料研究学报, 2018, 32(1): 12
|
7 |
De la parra S, Miguel Á, Fernández-pampín N, et al. High-performance aramids with intrinsic bactericide activity. [J]. ACS Appl. Mater. Interfaces, 2024, 16: 9293
|
8 |
Shi Y F, Tuo X L. Synthesis of heterocyclic aramid nanofibers and high performance nanopaper [J]. Adv. Mater., 2020, 1(4): 595
|
9 |
Xiong J H, Ding R J, Liu Z L, et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management [J]. Chem. Eng. J., 2023, 474: 145972
|
10 |
Wu W W, Song Q Q, Li N, et al. Lightweight, robust, porous heterocyclic para-aramid aerogel hollow fibers for multifunctional applications [J]. J. Appl. Polym. Sci., 2024, 141(9): 55034
|
11 |
Yan D, Luo J J, Wang S J, et al. Carbon nanotube‐directed 7 GPa heterocyclic aramid fiber and its application in artificial muscles [J]. Adv. Mater., 2023, 36(22): 2306129
|
12 |
Li J Q, Wen Y Y, Xiao Z H, et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance [J]. Adv. Funct. Mater., 2022, 32(42): 2200937
|
13 |
Song J Y, Chen C F, Du X, et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate [J]. Polym. Compos., 2023, 44(4): 2557
|
14 |
Nasser J, Lin J J, Steinke K, et al. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings [J]. Compos. Sci. Technol., 2019, 174: 125
doi: 10.1016/j.compscitech.2019.02.025
|
15 |
Zhou N, Xia L, Jiang N Y, et al. Enhanced interfacial bonding of AF/PEEK composite based on CNT/aramid nanofiber multiscale flexible-rigid structure [J]. J. Mater. Sci. Technol., 2024, 197: 139
doi: 10.1016/j.jmst.2024.02.015
|
16 |
Zhao J. Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid [J]. Fibers Polym., 2013, 14: 59
|
17 |
Jia C Y, Zhang R Z, Yuan C C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite [J]. Polym. Compos., 2020, 41(5): 2046
|
18 |
Yin L P, Zhou Z T, Luo Z, et al. Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites [J]. Polym. Test., 2019, 80: 106092
|
19 |
Rodríguez-Uicab O, Avilés F, Gonzalez-Chi P I, et al. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers [J]. Appl. Surf. Sci., 2016, 385: 379
|
20 |
Gonzalez-Chi P I, Rodríguez-Uicab O, Martin-Barrera C, et al. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites [J]. Compos. Part B-Eng., 2017, 122: 16
|
21 |
Cheng Z, Li B Y, Huang J Y, et al. Covalent modification of Aramid fibers' surface via direct fluorination to enhance composite interfacial properties [J]. Mater. Des., 2016, 106: 216
|
22 |
Gong X Y, Liu Y Y, Huang M N, et al. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites [J]. Compos. Commun., 2022, 29: 100996
|
23 |
Moosburger-will J, Lachner E, Löffler M, et al. Adhesion of carbon fibers to amine hardened epoxy resin: Influence of ammonia plasma functionalization of carbon fibers [J]. Appl. Surf. Sci., 2018, 453: 141
|
24 |
Jethva S, Bhabhor F, Patil C, et al. Studies of physio-chemical changes of dielectric barrier discharge plasma treated aramid fibers [J]. Vacuum, 2023, 215: 112313
|
25 |
Xu H, Xue J X, Bian H Get al. Green, simple, and rapid construction of coating on aramid fiber surfaces and their effects on the mechanical properties of aramid fiber/rubber composite interfaces [J]. J. Clean. Prod., 2024, 466: 142867
|
26 |
Zang H, Wang Z, Qin S, et al. Multifunctional and ultrastrong MXene modified aramid fibers [J]. Mater. Today Chem., 2023, 33: 101674
|
27 |
Cao Y Z, Hua H M, Yang P, et al. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose [J]. Carbohydr. Polym., 2020, 233: 115632
|
28 |
Gu R Q. Research on the application of dielectric barrier discharge low temperature technique in surface modification of para-aramid fibers [D]. Shanghai: Donghua University, 2013
|
28 |
顾如茜. 采用介质阻挡放电低温等离子体技术改性对位芳纶表面 [D]. 上海: 东华大学, 2013
|
29 |
Wang R X, Shen Y, Zhang C, et al. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface [J]. Appl. Surf. Sci., 2016, 367: 401
|
30 |
Narimisa M, Onyshchenko Y, Morent R, et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases [J]. Polym., 2021, 215: 123421
|
31 |
Kumar A, Škoro N, Gernjak W, et al. Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source [J]. Sci. Total Environ., 2023, 864: 161194
|
32 |
Peng C Y, Wu J S, Tsai C H D. Wettability distribution on the surface treated by plasma jet at different flow rates for microfluidic applications [J]. IEEE Trans. Plasma Sci., 2020, 49(1): 168
|
33 |
Abdel-fattah E. Surface activation of poly (methyl methacrylate) with atmospheric pressure Ar + H2O plasma [J]. Coatings, 2019, 9(4): 228
|
34 |
Wang M, Wang J, Liang J, et al. Strengthening the interface between individual aramid fibers and polymer at room and elevated temperatures [J]. Mater. Today Commun., 2020, 24: 101254
|
35 |
Dsouza R, Antunes P, Kakkonen M, et al. 3D interfacial debonding during microbond testing: Advantages of local strain recording [J]. Compos. Sci. Technol., 2020, 195: 108163
|
36 |
Bellil S, Pantaloni D, Shah D U, et al. Prediction of interfacial behaviour of single flax fiber bonded to various matrices by simulation of microdroplet test [J]. JCOMC., 2023, 11: 100351
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|