Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (3): 198-206    DOI: 10.11901/1005.3093.2024.198
  研究论文 本期目录 | 过刊浏览 |
热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响
张慧芳1,2, 吴浩1, 肖传民3, 李奇1, 谢君1(), 李金国1, 王振江1, 于金江1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.空装驻沈阳地区第三军事代表室 沈阳 110016
Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy
ZHANG Huifang1,2, WU Hao1, XIAO Chuanmin3, LI Qi1, XIE Jun1(), LI Jinguo1, WANG Zhenjiang1, YU Jinjiang1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Third Military Representative Room in Shenyang Area Air Force Equipment, Shenyang 110016, China
引用本文:

张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
Huifang ZHANG, Hao WU, Chuanmin XIAO, Qi LI, Jun XIE, Jinguo LI, Zhenjiang WANG, Jinjiang YU. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. Chinese Journal of Materials Research, 2025, 39(3): 198-206.

全文: PDF(4134 KB)   HTML
摘要: 

对一种典型的γʹ沉淀强化钴基高温合金进行热处理并表征其组织,研究了热处理对这种合金的组织和室温、高温拉伸性能的影响。结果表明:这种合金的铸态组织由γ基体、γʹ相、MC碳化物、γ/γʹ共晶及M3B2硼化物组成;固溶和时效热处理后合金中的γ/γʹ共晶消失,M3B2硼化物回溶,基体中析出尺寸均匀的γʹ相;与铸态相比,热处理态合金的室温拉伸强度降低,但是其塑性略有提高。热处理态合金950 ℃的强度和塑性均有一定的提高;铸态和热处理态合金的室温拉伸均呈解离断裂特征,高温拉伸断裂机制均为微孔聚集型的韧性断裂。

关键词 金属材料钴基高温合金组织特征热处理拉伸性能    
Abstract

A typical γʹ-strengthened Co-based superalloy was focused on in this research, and various characterization methods were employed to investigate the microstructure of the as-cast alloy. Subsequently, a heat treatment regime was developed based on the characteristics of the as-cast microstructure, and the effect of heat treatment on the microstructure and room temperature/high-temperature tensile properties of the alloy was assessed. The results showed that: the microstructure of the as-cast alloy consisted of γ matrix, γʹ phases, MC carbides, γ/γʹ eutectic and M3B2 borides. After solution and aging heat treatments, the γ/γʹ eutectic disappeared, and the M3B2 borides were mostly dissolved, with uniformly sized γ′ phases precipitating in the matrix. In comparison to the as-cast alloy, the room temperature tensile strength of the heat-treated alloy decreased, but plasticity slightly improved. Tensile tensile at 950 °C showed that the strength and plasticity of the heat-treated alloy were improved to some extent. Both the as-cast and heat-treated alloys exhibited a characteristic of cleavage fracture during room temperature tensile testing, while the fracture mechanism under high-temperature tensile conditions was a ductile fracture of the micropore aggregation type.

Key wordsmetallic materials    Co-based superalloy    microstructure characteristics    heat treatment    tensile properties
收稿日期: 2024-05-08     
ZTFLH:  TG132.32  
基金资助:国家重点研发计划(2023YFB3712003);国家科技重大专项(J2019-VI-0018-0133);中国航发自主创新专项资金项目(ZZCX-2022-040);中国科学院青年创新促进会项目(2020198)
通讯作者: 谢君,项目研究员,junxie@imr.ac.cn,研究方向为高温合金及其粉体制备技术
Corresponding author: XIE Jun, Tel: (024)23978341, E-mail: junxie@imr.ac.cn
作者简介: 张慧芳,女,1998年生,硕士生
图1  拉伸试样的加工示意图
图2  铸态合金的OM组织
PhaseCoNiCrTiCBTaW
MCMass fraction%1.690.210.1210.839.38-75.8820.24
Atom fraction%1.820.230.1514.3949.72-26.697.01
M3B2Mass fraction%4.543.081.542.45-4.7344.4537.22
Atom fraction%4.884.742.674.62-39.5422.6918.78
表1  铸态合金中析出相的EPMA结果
图3  铸态组织EBSD相的鉴别
图4  铸态合金中枝晶干和枝晶间区域γʹ相的形貌
图5  铸态合金的DSC升温曲线
图6  在不同温度初熔后合金的SEM图像
图7  合金的铸态组织、1120 ℃/3 h固溶处理后的组织以及1120 ℃/6 h固溶处理后的组织
图8  合金的热处理过程
图9  完全热处理后合金的组织
AlloyTemperature / oCRp0.2 / MPaRm / MPaA / %Z / %
As-castRT6909998.516
Heat-treatmentRT5768849.017
As-cast9503624718.016
Heat-treatment95036749710.035
表2  不同状态合金在不同拉伸条件下的力学性能
图10  铸态合金在不同温度拉伸断口的形貌
图11  合金在不同温度热处理态的拉伸断口形貌
图12  铸态合金在不同温度拉伸断裂后近断口区域的纵截面形貌
图13  热处理态合金在不同温度拉伸断裂后近断口区域纵截面的形貌
1 Akande I G, Oluwole O O, Fayomi O S I, et al. Overview of mechanical, microstructural, oxidation properties and high-temperature applications of superalloys [J]. Mater. Today: Proc, 2021, 43: 2222
2 Gowthaman P S, Jeyakumar S. A review on machining of high temperature aeronautics super-alloys using WEDM [J]. Mater. Today: Proc, 2019, 18: 4782
3 Forsik S A, Polar Rosas A O, Wang T, et al. High-temperature oxidation behavior of a novel Co-base superalloy [J]. Metall. Mater. Trans. A, 2018, 49(9): 4058
4 Murray S P. CoNi-base superalloys with improved high temperature properties and 3D printability [D]. Santa Barbara: University of California, 2021
5 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312(5770): 90
pmid: 16601187
6 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γʹ phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49(6): 1474
7 Bauer A, Neumeier S, Pyczak F, et al. Microstructure and creep strength of different γ/γʹ-strengthened Co-base superalloy variants [J]. Scr. Mater, 2010, 63(12): 1197
8 Sheykhlari A F, Arabi H, Boutorabi S M A. Directional coalescence of γ' precipitates during long time aging of CoNiAlW superalloy [J]. Mater. Charact. 2023, 196: 112597
9 Kolb M, Freund L P, Fischer F, et al. On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys [J]. Acta Mater., 2018, 145: 247
10 Zheng Y R, Cai Y L, Ruan Z C, et al. Investigation of effect mechanism of hafnium and zirconium in high temperature materials [J]. J. Aeronaut. Mater., 2006, (3): 25
10 郑运荣, 蔡玉林, 阮中慈 等. Hf和Zr在高温材料中作用机理研究 [J]. 航空材料学报, 2006, (3): 25
11 Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γʹ strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
12 Zheng L, Guo H B, Guo L. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
12 郑 蕾, 郭洪波, 郭 磊. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
13 Kumar A L, Chaitanya N B, Kumar B S, et al. Study of tensile fracture mechanisms of a Ni-base superalloy supercast 247A [J]. Procedia Mater. Sci., 2014, 5: 1090
14 Wang L, Wang S, Song X, et al. Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy [J]. Int. J. Fatigue, 2014, 62: 210
15 Wang Y, Sun F, Dong X P, et al. Thermodynamic study on equilibrium precipitation phases in a novel Ni-Co base superalloy [J]. Acta. Metall. Sin., 2010, 46(3): 334
doi: 10.3724/SP.J.1037.2009.00515
15 王 衣, 孙 峰, 董显平 等. 新型Ni-Co基高温合金中平衡析出相的热力学研究 [J]. 金属学报, 2010, 46(3): 334
16 Qiao H B, Liu L, Zhao X B, et al. Thermodynamics calculation and analysis of oxide inclusion formation in single crystal superalloy DD6 [J]. J. Mater. Eng., 2013, (7): 78
doi: 10.3969/j.issn.1001-4381.2013.07.015
16 乔海滨, 刘 林, 赵新宝 等. DD6 单晶高温合金氧化物夹杂形成的热力学计算及分析 [J]. 材料工程, 2013, (7): 78
17 Zhang Y W, Wang F M, Hu B F. Estimation of the effect of hafnium on equilibrium phases in FGH97 PM superalloy [J]. J. Univ. Sci. Technol. Beijing, 2011, 33(8): 978
17 张义文, 王福明, 胡本芙. 铪对FGH97合金平衡相影响的评估 [J]. 北京科技大学学报, 2011, 33(8): 978
18 Saunders N, Miodownik A P, Schillé J P. Modelling of the thermo-physical and physical properties for solidification of Ni-based superalloys [J]. J. Mater. Sci., 2004, 39: 7237
19 Saunders N, Guo U. K.Z., Li X,et al. Using JMatPro to model materials properties and behavior [J]. JOM, 2003, 55: 60
20 Xu Y T, Sha Q Z. Thermodynamic simulation calculation of Co-8.8Al-9.8W alloy with different B content based on JMatPro software [J]. Rare Met. Mater. Eng., 2016, 45(9): 2332
20 徐仰涛, 沙岐振. 基于JMatPro软件不同B含量下Co-8.8Al-9.8W合金析出相的热力学模拟计算 [J]. 稀有金属材料与工程, 2016, 45(9): 2332
21 Xu Y T, Xia R L, Sha Q Z, et al. Phase composition and cracking behavior on TIG cladding layer of Co-8.8Al-9.8W-0.2B superalloy based on JMatPro software [J]. Rare Met. Mater. Eng., 2017, 46(9): 2459
21 徐仰涛, 夏荣里, 沙岐振 等. 基于JMatPro软件TIG堆焊层Co-8.8Al-9.8W-0.2B合金的相组成及开裂行为 [J]. 稀有金属材料与工程, 2017, 46(9): 2459
22 Liu J, Yu J J, Yang Y H, et al. Effects of Mo on the evolution of microstructures and mechanical properties in Co-Al-W base superalloys [J]. Mater. Sci. Eng., A, 2019, 745: 404
23 Chen J, Guo M, Yang M, et al. Phase-field simulation of γʹ coarsening behavior in cobalt-based superalloy [J]. Comput. Mater. Sci., 2021, 191: 110358
24 Maslenkov S B, Burova N N, Khangulov V V. Effect of hafnium on the structure and properties of nickel alloys [J]. Met. Sci. Heat Treat., 1980, 22: 283
25 Ro Y, Koizumi Y, Harada H. High temperature tensile properties of a series of nickel-base superalloys on a γ/γ′ tie line [J]. Mater. Sci. Eng., A, 1997, 223(1-2): 59
26 Hou G C, Xie J, Yu J J, et al. Room temperature tensile behaviour of K640S Co-based superalloy [J]. Mater. Sci. Technol., 2019, 35(5): 530
27 Ling C, Li S P, Lin J, et al. Carbides evolution and mechanical behavior of Co-Cr-Nb-W wear-resistance alloy [J]. Rare Met. Mater. Eng., 2024, 53(3): 815
27 凌 晨, 李尚平, 林 筠 等. Co-Cr-Nb-W合金碳化物组织转变及力学性能研究 [J]. 稀有金属材料与工程, 2024, 53(3): 815
28 Gui W M, Zhang H Y, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy [J]. J. Alloys Compd., 2017, 728: 145
[1] 胥聪敏 孙姝雯 朱文胜 陈志强 李城臣. 不同油水比环境下三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[4] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[5] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[6] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[8] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[9] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[10] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[11] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[12] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[13] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[14] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.