Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 126-136    DOI: 10.11901/1005.3093.2024.039
  研究论文 本期目录 | 过刊浏览 |
NiCo@C(N)/NC纳米复合物的制备及其吸波性能
包秀坤1, 史桂梅2()
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 沈阳工业大学理学院 沈阳 110870
Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites
BAO Xiukun1, SHI Guimei2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Science, Shenyang University of Technology, Shenyang 110870, China
引用本文:

包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
Xiukun BAO, Guimei SHI. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. Chinese Journal of Materials Research, 2025, 39(2): 126-136.

全文: PDF(9593 KB)   HTML
摘要: 

采用电弧放电法和多巴胺原位自聚合热解法制备NiCo@C(N)/NC纳米复合物,使用X射线衍射、拉曼光谱、X射线电子能谱、透射电子显微镜和矢量网络分析仪等手段表征其物相组成、微观结构和电磁特性,研究了多巴胺含量对这种纳米复合物吸波性能的影响。结果表明,NiCo@C(N)与多巴胺质量比为1∶2的NiCo@C(N)/NC纳米复合物具有优异的吸波性能,在厚度为3.17 mm、频率6.61 GHz时其最佳反射损耗达到-38.87 dB。NiCo@C(N)/NC纳米复合物的匹配厚度为1.67 mm时,其有效吸收带宽达到4.93 GHz。NiCo@C(N)/NC纳米复合物的优异吸波性能,主要源于其双壳层氮掺杂碳构成的异质结构多界面极化、缺陷偶极子极化及形成的导电网络增强了介电响应能力。同时,适量的N掺杂石墨碳含量能调制纳米复合物的电磁参数,改善NiCo核和氮掺杂碳双壳层的电磁损耗协同作用和优化纳米复合物的阻抗匹配。

关键词 复合材料氮掺杂碳NiCo合金微波吸收性能    
Abstract

Nanocomposites NiCo@C(N)/NC were fabricated by a two-step method, that is, NiCo@C(N) nanocapsules were first prepared by arc-discharge technique, next dopamine (DA) was self-polymerized on NiCo@C(N) surface, which then were subjected to post-heat treatment. The study focuses on the effect of the dopamine content on the microwave absorption performance of the nanocomposites. The acquired nanocomposites NiCo@C(N)/NC were characterized by means of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and vector network analyzer in terms of their phase composition, microstructure, and electromagnetic properties etc. The results show that the NiCo@C(N)/NC nanocomposites possess excellent wave-absorbing properties when the mass ratio of NiCo@C(N) to DA is 1∶2. Accordingly, the optimal reflection loss is -38.87 dB at a thickness of 3.17 mm and a frequency of 6.61 GHz. It achieves an effective absorption bandwidth of 4.93 GHz when the coating is matched to a thickness of 1.67 mm. The NiCo@C(N)/NC nanocomposites exhibit excellent wave absorbing performance due to the heterogeneous structure of N-doped carbon, defective induced dipole polarization, and the formation of a conductive network, all of which contribute to its high dielectric loss capability. Also, the appropriate amount of N-doped graphitic carbon can effectively improve the electromagnetic synergy effect between the NiCo core and the nitrogen-doped carbon double-shell, thus optimize the impedance matching of the nanocomposites.

Key wordscomposites    N doping carbon    NiCo alloys    microwave absorption properties
收稿日期: 2024-01-16     
ZTFLH:  TB332  
基金资助:辽宁省自然科学基金(20180550564)
通讯作者: 史桂梅,教授,gmshi@sut.edu.cn,研究方向为纳米吸波材料的制备及性能
Corresponding author: SHI Guimei, Tel: (024)25496502, E-mail: gmshi@sut.edu.cn
作者简介: 包秀坤,女,1991年生,博士
图1  N0、N1、N2和N3纳米复合物的XRD谱
图2  N0、N1、N2和N3纳米复合物的Raman光谱
图3  N2的X射线电子能谱
图4  N0和N2的透射电镜像和高分辨透射电镜像
图5  N0、N1、N2和N3纳米复合物的复介电常数和磁导率与频率的关系
图6  N0、N1、N2和N3纳米复合物的反射损耗曲线
Sample

Filler ratio

/ %, mass fraction

RLmin / dBEAB / GHzThickness / mmRef.
CoNi/NPC50-66.04.562.07[27]
CoNi@SiO2@C50-46.05.602.2[28]
Ni@C50-35.03.602.0[29]
CoNi@PRM-NC35-56.03.681.7[30]
NiFe@C30-51.03.972.2[31]
表1  文献中吸波材料的吸波性能
图7  N0、N1、N2和N3纳米复合物的Cole-Cole半圆图
图8  N0、N1、N2和N3纳米复合物的C0曲线
图9  N0、N1、N2和N3纳米复合物的阻抗匹配
图10  N0、N1、N2和N3纳米复合物的衰减系数
1 Gao Z G, Lan D, Zhang L M, et al. Simultaneous manipulation of interfacial and defects Polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption [J]. Adv. Funct. Mater., 2021, 31(50): 2106677
2 Wang B L, Chen H Y, Wang S, et al. Construction of core-shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness [J]. Carbon, 2021, 184: 223
3 Sun C H, Jia Z R, Xu S, et al. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113: 128
doi: 10.1016/j.jmst.2021.11.006
4 Wang J Y, Wang Z H, Liu R G, et al. Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption [J]. Mater. Lett., 2017, 209: 276
5 Wang Z J, Jiang H T. Core-shell FeNi@SiO2 composite with enhanced microwave absorption performance [J]. J. Alloys Compd., 2022, 923: 166468
6 Liu Y, Liu X H, E X Y, et al. Synthesis of Mn x O y @C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103: 157
7 Pan F, Cai L, Shi Y Y, et al. Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption [J]. Chem. Eng. J., 2022, 435: 1355009
8 Shi G M, Lv S H, Cheng X B, et al. Enhanced microwave absorption properties of modified Ni@C nanocapsules with accreted N doped C shell on surface [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(20): 17483
9 Tang J Y, Er C C, Kong X Y, et al. Two-dimensional interface engineering of g-C3N4/g-C3N4 nanohybrid: synergy between isotype and p-n heterojunctions for highly efficient photocatalytic CO2 reduction [J]. Chem. Eng. J., 2023, 466: 143287
10 Khan M A, Rameel M I, Salam F, et al. Construction of isotype heterojunctions in polymeric carbon nitride with thermal modulation and improved photocatalytic hydrogen production activity [J]. Mater. Chem. Phys., 2024, 315: 129052
11 Wang H M, Hao Y L, Xiang L L, et al. Interface and magnetic-dielectric synergy strategy to develop Fe3O4-Fe2CO3/multi-walled carbon nanotubes/reduced graphene oxide mixed-dimensional multicomponent nanocomposites for microwave absorption [J]. Mater. Res. Bull., 2024, 171: 112631
12 Zhang X, Xiang Z, Yao K, et al. Hydrangea-like N-doped Carbon/MoO2@SnS2 microspheres with Schottky contact: a multi-interface heterostructure for high-performance microwave absorption [J]. Composites, 2023, 263B: 110858
13 Zhang J F, Li G R, Zhang Y G, et al. Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103905
14 Zeng X J, Zhang H Q, Yu R H. Trace tiny NiCo alloy nanoparticles encapsulated on hierarchical porous peanut-like carbon walls for robust oxygen evolution reaction [J]. J. Alloys Compd., 2023, 960: 170950
15 Tao J H. Study on adsorption of imidazolium ionic liquids by mesopsrous carbon [D]. Harbin: Harbin Normal University, 2015
15 陶金慧. 介孔碳的制备及对咪唑基离子液体的吸附研究 [D]. 哈尔滨: 哈尔滨师范大学, 2015
16 Gou G J, Hua W L, Liu K Y, et al. Bimetallic MOF@wood-derived hierarchical porous carbon composites for efficient microwave absorption [J]. Diam. Relat. Mater., 2024, 141: 110688
17 Zhang H X, Sun K G, Sun K K, et al. Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 158: 242
18 Xu L L, Tao J Q, Zhang X F, et al. Co@N-doped double-shell hollow carbon via self-templating-polymerization strategy for microwave absorption [J]. Carbon, 2022, 188: 34
19 Shao X L, Wang T H, Gan Z Y, et al. Tailoring of N-doped graphite coated cobalt nanoparticles via arc discharge enables the high microwave absorption [J]. Carbon, 2021, 177: 171
20 Li B, Xu J, Xu H Y, et al. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption [J]. Chem. Eng. J., 2022, 435: 134846
21 Lv S H, Cheng Y Z, Chen F, et al. Multiple interfacial Fe3C/MnO/NC composites towards high-performance microwave absorption [J]. J. Alloys Compd., 2023, 965: 171338
22 Li S T, Shi G M, Li Q, et al. One-step synthesis and performances of Ni@CN nanocapsules with superior dual-function as electrocatalyst and microwave absorbent [J]. Colloids Surf., 2021, 615A: 126162
23 Dong S X, Li J, Zhang S, et al. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning [J]. Colloids Surf., 2022, 651A: 129670
24 Ma L, Wu Y Y, Wu Z W, et al. Enhanced dielectric loss in N-doped three-dimensional porous carbon for microwave absorption [J]. Mater. Today Adv., 2023, 20: 100434
25 Lalan V, Ganesanpotti S. The smallest anions entrapped mayenite electride@graphitic carbon core-shells reinforced with superparamagnetic Fe3O4 delivers unrivalled high-frequency microwave absorption [J]. Chem. Eng. J., 2023, 461: 141857
26 Ding H, Sun Z H, Tian S Y, et al. Tailoring Ni3ZnC0.7/graphite heterostructure in N-rich laminated porous carbon nanosheets for highly efficient microwave absorption [J]. Ceram. Int., 2023, 49: 31763
27 Zhang F, Chen Y F, Ren Y J, et al. Anionic MOF derived Bimetallic Ni x Co y @Nano-porous carbon composites toward strong and efficient electromagnetic wave absorption [J]. J. Materiomics, 2022, 8: 852
28 Wang B L, Liao H Y, Xie X B, et al. Bead-like cobalt nanoparticles coated with dielectric SiO2 and carbon shells for high-performance microwave absorber [J]. J. Colloid Interf. Sci., 2020, 578: 346
29 Li N, Cao M H, Hu C W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers [J]. J. Mater. Chem., 2012, 22: 18426
30 Yan J, Huang Y, Chen C, et al. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers [J]. Carbon, 2019, 152: 545
31 Yang Z H, Lv H L, Wu R B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation [J]. Nano Res., 2016, 9: 3671
32 Zhang H, Zhao Y P, Zuo X Q, et al. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness [J]. Chem. Eng. J., 2023, 467: 143414
33 Jiang B, Yang W, Bai H X, et al. Multiscale structure and interface engineering of Fe/Fe3C in situ encapsulated in nitrogen-doped carbon for stable and efficient multi-band electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 158: 9
34 Sun M X, Xiong Z M, Zhang Z W, et al. One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption [J]. Compos. Sci. Technol., 2022, 228: 109663
35 Tang C H, Ma W J, He P, et al. Encapsulated Prussian blue analogs derived nanocubes with tunable yolk-shell structure enabling highly efficient microwave absorption [J]. Carbon, 2023, 215: 118462
[1] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[2] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[3] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[4] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[5] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[6] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[7] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[8] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[9] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[10] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[11] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[12] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[13] 庄超君, 胡俊辉, 鄢瑛. 微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能[J]. 材料研究学报, 2024, 38(12): 893-901.
[14] 霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.
[15] 武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏. S/NiFeP/KB复合材料锂硫电池正极的性能[J]. 材料研究学报, 2024, 38(11): 828-836.