Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 828-836    DOI: 10.11901/1005.3093.2023.614
  研究论文 本期目录 | 过刊浏览 |
S/NiFeP/KB复合材料锂硫电池正极的性能
武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏()
太原科技大学化学工程与技术学院 太原 030024
Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries
WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng()
Taiyuan University of Science and Technology, College of Engineering and Technology, Taiyuan 030024, China
引用本文:

武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏. S/NiFeP/KB复合材料锂硫电池正极的性能[J]. 材料研究学报, 2024, 38(11): 828-836.
Jing WU, Ziyi ZHANG, Xu HAN, Xingyan HOU, Xueyan LI, Shasha LI, Wen LIU, Peng LI. Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries[J]. Chinese Journal of Materials Research, 2024, 38(11): 828-836.

全文: PDF(8910 KB)   HTML
摘要: 

将2D纳米片NiFeP生长在Ketjen Black ECP-600JD炭黑(KB)上制备出花球颗粒状NiFeP/KB电催化剂,再将其与纳米硫颗粒按适当比例均匀混合制备出锂硫电池的正极。这种S/NiFeP/KB正极在0.1C下首次放电比容量为1454.5 mAh/g,循环200次后仍有821.1 mAh/g,在2C下300次循环后比容量为639.9 mAh/g,容量保持率达74.7%;使用NiFeP/KB电催化剂能提高电池中多硫化锂的氧化、还原反应速率,从而改善锂、硫反应动力学。

关键词 复合材料锂硫电池双金属磷化物NiFeP纳米硫颗粒电催化剂    
Abstract

Transition metal phosphide has not only metal-like conductive properties but good adsorption and catalytic conversion of polysulfide lithium. In this paper, the NiFeP/KB electrocatalyst grown by 2D nanosheet NiFeP on Ketjen Black ECP-600JD carbon black (KB) was prepared. The S/NiFeP/KB cathode material was obtained by mixing the nano sulfur particles with NiFeP/KB in a proportional and uniform way. Due to the synergistic effect of metal doping and hierarchical structure, the electrode prepared using S/NiFeP/KB material had a specific capacity of 1454.5 mAh/g at 0.1C for the first discharge, which remained 821.1 mAh/g after 200 cycles, 639.9 mAh/g after 300 cycles at 2C, and the capacity retention rate reached 74.7%. Further combined with CV and EIS tests, the NiFeP/KB electrocatalyst can effectively improve the oxidation and reduction reaction rate of lithium polysulfide in the battery, thus promoting the reaction kinetics of lithium and sulfur.

Key wordscomposite    lithium-sulfur battery    bimetallic phosphide    NiFeP    Nano-sulfur particles    electrocatalyst
收稿日期: 2023-12-27     
ZTFLH:  TM911  
基金资助:国家自然科学基金(22278251);大学生创新创业训练计划(202210109013)
通讯作者: 李鹏,lipeng_ty@tyust.edu.cn,研究方向为锂硫电池
Corresponding author: LI Peng, Tel: 13466816621, E-mail: lipeng_ty@tyust.edu.cn
作者简介: 武 静,女,1998年生,硕士生
图1  NiFeP/KB复合材料合成示意图、NiFe-LDH和NiFeP的SEM照片、NiFe-LDH及NiFeP/KB的高倍SEM照片
图2  纳米硫颗粒的高倍SEM照片和S/NiFeP/KB复合材料的SEM照片
图3  NiFe-LDH/KB和NiFeP/KB的XRD谱
图4  NiFeP/KB的XPS全谱、Ni 2p和Fe 2p的精细能谱以及P 2p的轨道谱
图5  NiFeP/KB和NiFeP/KB/S的氮气吸附-脱附等温曲线和孔径分布图以及 S/NiFeP/KB和S/KB的TGA曲线
图6  S/NiFeP/KB和S/KB电极在0.1C下的循环性能、S/NiFeP/KB和S/KB电极的倍率性能、S/NiFeP/KB电极的首圈充放电曲线以及S/NiFeP/KB电极在2C下的循环性能
图7  S/NiFeP/KB和S/KB电极在0.1 mV/s下的CV曲线、S/NiFeP/KB电极在0.1 mV/s下循环4圈的CV曲线以及S/NiFeP/KB和S/KB电极的电化学阻抗谱
图8  S/NiFeP/KB电极和S/KB电极在不同扫速下的CV曲线以及S/NiFeP/KB和S/KB电极峰值电流的线性拟合
1 Cao Y L, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries [J]. Nat. Nanotechnol., 2019, 14(3): 200
doi: 10.1038/s41565-019-0371-8 pmid: 30778215
2 Liu J, Bao Z A, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nat. Energy, 2019, 4(3): 180
doi: 10.1038/s41560-019-0338-x
3 Fang D L, Sun P, Huang S Z, et al. An exfoliation-evaporation strategy to regulate N coordination number of Co single-atom catalysts for high- performance lithium-sulfur batteries [J]. ACS Mater. Lett., 2022, 4(1): 1
4 Peng H J, Huang J Q, Cheng X B, et al. Review on high‐loading and high‐energy lithium-sulfur batteries [J]. Adv. Energy Mater., 2017, 7(24): 1700260
5 Song Y, Li X Y, He C Z. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries [J]. Chin. Chem. Lett., 2021, 32(3): 1106
6 Wang R R, Wu R B, Yan X X, et al. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries [J]. Adv. Funct. Mater., 2022, 32(20): 2200424
7 Zou Q L, Lu Y C. Liquid electrolyte design for metal‐sulfur batteries: mechanistic understanding and perspective [J]. EcoMat, 2021, 3(4): e12115
8 Fan X J, Sun W W, Meng F C, et al. Advanced chemical strategies for lithium-sulfur batteries: a review [J]. Green Energy Environ., 2018, 3(1): 2
9 Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes [J]. Nat. Energy, 2016, 1(9): 16132
10 Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries [J]. Chem. Soc. Rev., 2017, 46(17): 5237
11 Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chem. Soc. Rev., 2016, 45(20): 5605
pmid: 27460222
12 Yue J P, Yan M, Yin Y X, et al. Progress of the interface design in all-solid-state Li-S batteries [J]. Adv. Funct. Mater., 2018, 28(38): 1707533
13 Chen Y, Wang T Y, Tian H J, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability [J]. Adv. Mater., 2021, 33(29): 2003666
14 Chen Y, Zhang W X, Zhou D, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries [J]. ACS Nano, 2019, 13(4): 4731
doi: 10.1021/acsnano.9b01079 pmid: 30924635
15 Deng C, Wang Z W, Feng L L, et al. Electrocatalysis of sulfur and polysulfides in Li-S batteries [J]. J. Mater. Chem. A, 2020, 8(38): 19704
16 Du M, Wang X Y, Geng P B, et al. Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries [J]. Chem. Eng. J., 2021, 420: 130518
17 Hong X D, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries [J]. J. Energy Chem., 2020, 42: 144
doi: 10.1016/j.jechem.2019.07.001
18 Jana M, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy Environ. Sci., 2020, 13(4): 1049
19 Lei J, Liu T, Chen J J, et al. Exploring and understanding the roles of Li2S n and the strategies to beyond present Li-S batteries [J]. Chem., 2020, 6(10): 2533
20 Liu D H, Zhang C, Zhou G M, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect [J]. Adv. Sci., 2018, 5(1): 1700270
21 Chen Z C, Fang R Y, Liang C, et al. Recent progress in sulfur cathode for Li-S batteries [J]. Mater. Rep., 2018, 32(9): 1401
21 陈子冲, 方如意, 梁 初 等. 锂硫电池硫正极材料研究进展 [J]. 材料导报, 2018, 32(9): 1401
22 Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries [J]. J. Am. Chem. Soc., 2015, 137(36): 11542
doi: 10.1021/jacs.5b04472 pmid: 26331670
23 Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design [J]. Nat. Commun., 2016, 7(1): 11203
24 Seh W Z, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries [J]. Nat. Commun., 2013, 4(1): 1331
25 Zhao W W, Wang Y F, Duan D H, et al. Application of layered Co3O4/C derived from metal-organic framework in lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(6): 20120263
25 赵文文, 王韵芳, 段东红 等. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用 [J]. 材料导报, 2022, 36(6): 20120263
26 Chen T, Ma L B, Cheng B R, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries [J]. Nano Energy, 2017, 38: 239
27 Cheng Z B, Xiao Z B, Pan H, et al. Elastic sandwich‐type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density [J]. Adv. Energy Mater., 2018, 8(10): 1702337
28 Wang X L, Zhou N, Tian Y W, et al. SnS2/ZIF-8 derived two-dimensional porous nitrogen-doped carbon nanosheets for lithium-sulfur batteries [J]. J. Inorg. Mater., 2023, 38: 938
28 王新玲, 周 娜, 田亚文 等. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究 [J]. 无机材料学报, 2023, 38: 938
29 Guang Z X, Huang Y, Chen X F, et al. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries [J]. Electrochim. Acta, 2019, 307: 260
30 Huang S, Huixiang E, Yang Y, et al. Transition metal phosphides: new generation cathode host/separator modifier for Li-S batter-ies [J]. J. Mater. Chem. A, 2021, 9(12): 7458
31 Huang S Z, Von Lim Y, Zhang X M, et al. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery [J]. Nano Energy, 2018, 51: 340
32 Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2019, 141(9): 3977
doi: 10.1021/jacs.8b12973 pmid: 30764605
33 Ma L B, Yuan H, Zhang W J, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries [J]. Nano Lett., 2017, 17(12): 7839
doi: 10.1021/acs.nanolett.7b04084 pmid: 29182880
34 Jin G Y, He H C, Wu J, et al. Cobalt-doped hollow carbon framework as sulfur host for the cathode of lithium sulfur battery [J]. J. Inorg. Mater., 2021, 36(2): 203
doi: 10.15541/jim20200161
35 Wang J N, Jin J, Wen Z Y. Application of separators modified by carbon nanospheres enriched with α-MoC1- x nanocrystalline in lithium sulfur batteries [J]. J. Inorg. Mater., 2020, 35(5): 532
35 王佳宁, 靳 俊, 温兆银. α-MoC1- x 纳米晶富集碳球修饰隔膜对锂硫电池性能的影响 [J]. 无机材料学报, 2020, 35(5): 532
doi: 10.15541/jim20190237
36 Liu G L, Wang W M, Zeng P, et al. Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries [J]. Nano Lett., 2022, 22(15): 6366
37 Wang X, Zhang D, Du F. Recent progress of single-atom catalytic materials for lithium-sulfur batteries [J]. Chin. J. Appl. Chem., 2022, 39(4): 513
37 王 欣, 张 冬, 杜 菲. 单原子催化剂在锂硫电池中的研究进展 [J]. 应用化学, 2022, 39(4): 513
38 Hu K, Guo J, Zhang M G, et al. Application of metal compounds in cathode materials and interlayers for lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(19): 21010010
38 胡 坤, 郭 锦, 张敏刚 等. 金属化合物在锂硫电池正极材料及夹层中的应用 [J]. 材料导报, 2022, 36(19): 21010010
39 Chai L L, Ye H Z, Hu Z G, et al. Tuning the architecture of hierarchical porous CoNiO2 nanosheet for enhanced performance of Li-S batteries [J]. Batteries, 2022, 8(12): 262
40 Liu J B, Song Y F, Lin C J, et al. Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium-sulfur batteries [J]. Sci. China Mater., 2022, 65(4): 947
41 Liu J B, Hu C C, Li H P, et al. Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. J. Alloys Compd., 2021, 871: 159576
42 Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries [J]. ACS Nano, 2019, 13(8): 8986
doi: 10.1021/acsnano.9b02903 pmid: 31356051
43 Zhong Y R, Yin L C, He P, et al. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2018, 140(4): 1455
doi: 10.1021/jacs.7b11434 pmid: 29309139
44 Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry [J]. Joule, 2018, 2(12): 2681
45 Wang L, Wang B J, Fan M H, et al. Unraveling the structure and composition sensitivity of transition metal phosphide toward catalytic performance of C2H2 semi-hydrogenation [J]. J. Catal., 2022, 416: 112
46 Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh‐loading lithium-sulfur conversion in a microreactor‐like battery [J]. Adv. Funct. Mater., 2020, 30(3): 1906661
47 Xia W L, Han M Y, Chen Y F, et al. NiFeP anchored on rGO as a multifunctional interlayer to promote the redox kinetics for Li-S batteries via regulating d-bands of Ni-based phosphides [J]. ACS Sustain. Chem. Eng., 2023, 11(5): 1742
48 Yang Q, Wei X J, Cao X, et al. Unveiling the synergistic catalysis essence of trimetallic Fe-Co-Ni phosphides for lithium-sulfur chemistry [J]. Chem. Eng. J., 2023, 452: 139638
49 Tang K, Wang X F, Wang M F, et al. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation [J]. ChemElectroChem, 2017, 4(9): 2150
50 Zhou J L, Zhao Z X, Wu T Y, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/Carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries [J]. Acta Chim. Sin., 2023, 81(4): 351
50 周俊粮, 赵振新, 武庭毅 等. 多功能磷化铁碳布(FeP/CC)中间层高效催化多硫化物实现锂硫电池的高容量与高稳定性 [J]. 化学学报, 2023, 81(4): 351
doi: 10.6023/A23010010
[1] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[7] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[8] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[9] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[10] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[11] 罗洪旭, 赵永华, 张家慷, 冯效迁, 张启俭, 王欢. 双功能催化剂(Cu-Co/X-MMT)的制备和性能[J]. 材料研究学报, 2024, 38(11): 872-880.
[12] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[13] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[14] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.