Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 137-144    DOI: 10.11901/1005.3093.2023.606
  研究论文 本期目录 | 过刊浏览 |
镍钴离子比例对铁氧体吸波性能的影响
王光明1, 马志军1,2(), 郑云生1, 程亮1, 杭文武1
1 辽宁工程技术大学矿业学院 阜新 123000
2 辽宁工程技术大学材料科学与工程学院 阜新 123000
Effect of Nickel-cobalt Ion Ratio on Ferrite Wave-absorbing Properties
WANG Guangming1, MA Zhijun1,2(), ZHENG Yunsheng1, CHENG Liang1, HANG Wenwu1
1 College of Mining, Liaoning Technical University, Fuxin 123000, China
2 College of Materials Science & Engineering, Liaoning Technical University, Fuxin 123000, China
引用本文:

王光明, 马志军, 郑云生, 程亮, 杭文武. 镍钴离子比例对铁氧体吸波性能的影响[J]. 材料研究学报, 2025, 39(2): 137-144.
Guangming WANG, Zhijun MA, Yunsheng ZHENG, Liang CHENG, Wenwu HANG. Effect of Nickel-cobalt Ion Ratio on Ferrite Wave-absorbing Properties[J]. Chinese Journal of Materials Research, 2025, 39(2): 137-144.

全文: PDF(7963 KB)   HTML
摘要: 

用溶胶-凝胶法制备尖晶石型Ni x Co1 - x Fe2O4,使用X射线衍射仪(XRD)、透射电子显微镜(TEM)、矢量网络分析仪(VNA)等手段表征其晶型、粒度、微观形貌、电磁损耗以及吸波性能,研究了镍钴离子比例对其结构和吸波性能的影响。结果表明:柠檬酸与金属离子摩尔比为1∶1的铁氧体Ni x Co1 - x Fe2O4其平均粒径为66.00~70.00 nm。Ni2+∶Co2+ = 5∶5的铁氧体Ni x Co1 - x Fe2O4吸波性能最好,在吸收层厚度为3.00 mm频率为17.32 GHz处的反射损耗值最小值为-16.15 dB,有效频带宽度为2.21 GHz (15.79~18.00 GHz),处于Ku波段内。Ni0.5Co0.5Fe2O4优异的吸波性能,归因于交换共振和涡流损耗的共同作用。

关键词 溶胶-凝胶法尖晶石镍钴铁氧体离子比例吸波性能    
Abstract

Spinel ferrite Ni x Co1 - x Fe2O4 was prepared by sol-gel method, and the effect of different ion ratios Ni2+∶Co2+ on its structure and wave-absorbing properties were studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and vector network analyzer (VNA). Focus on its following features: crystallographic structure, particle size, micromorphology, electromagnetic loss and wave-absorbing performance. The results showed that the average particle size of ferrite wave-absorbers prepared with a molar ratio of citric acid to metal ions of 1∶1 by pH = 7 and followed by being crystalized 950 oC for 3 h, is 66.00~70.00 nm. When Ni2+∶Co2+ = 5∶5, Ni0.5Co0.5Fe2O4 has the best wave-absorbing performancewith the minimum reflection loss value is -16.15 dB at the absorption layer thickness of 3.00 mm and the frequency is 17.32 GHz, and the effective frequency band width is 2.21 GHz (15.79~18.00 GHz), which is in the Ku band, and the excellent wave-absorbing performance of Ni0.5Co0.5Fe2O4 is attributed to the combined effect of exchange resonance and eddy current loss.

Key wordssol-gel method    spinel    nickel-cobalt ferrite    ion ratio    wave-absorbing properties
收稿日期: 2023-12-25     
ZTFLH:  TM277  
基金资助:国家自然科学基金(52274265)
通讯作者: 马志军,教授,zhijunma0930@126.com,研究方向为功能性矿物材料
Corresponding author: MA Zhijun, Tel: 13941881359, E-mail: zhijunma0930@126.com
作者简介: 王光明,男,1997年生,硕士
图1  不同Ni2+、Co2+掺杂比例的镍钴铁氧体的XRD谱
Structural formula / (°)d / nmɑ / nm(311) Priority crystallization diffraction peak
FWHM / (°)D / nm
Ni0.1Co0.9Fe2O435.570.25210.83610.0021666.7
Ni0.3Co0.7Fe2O435.640.25170.83480.0020669.9
Ni0.5Co0.5Fe2O435.670.25150.83410.0021367.6
Ni0.7Co0.3Fe2O435.770.25080.83180.0020668.1
Ni0.9Co0.1Fe2O435.780.25070.83150.0020869.3
表1  镍钴铁氧体的结构参数
图2  不同Ni2+、Co2+掺杂比的镍钴铁氧体的TEM照片
图3  不同掺杂比Ni x Co1 - x Fe2O4样品的反射损耗、频率和厚度曲线
Structural formulaNi0.5Co0.5Fe2O4NiFe2O4CoFe2O4
D / nm67.656.036.0
表2  镍钴铁氧体、镍铁氧体和钴铁氧体的晶粒尺寸
Structural formulaMin. reflection loss / dBFrequency / GHzBandwidth / GHz (≤ -10 dB)
Ni0.5Co0.5Fe2O4-16.1517.322.21(15.79~18.00)
NiFe2O4-16.586.201.40(5.00~6.40)
CoFe2O4-15.626.201.00(5.40~6.40)
表3  镍钴铁氧体、镍铁氧体和钴铁氧体的吸波性能
Preparation methodStructural formulaMin. reflection loss / dBFrequency / GHzBandwidth / GHz (≤ -5 dB)
Sol-gel methodNiFe2O4-16.586.203.80
Ni0.5Co0.5Fe2O4-16.1517.323.65
CoFe2O4-15.626.203.80
Solvothermal methodNiFe2O4-9.106.001.37
Ni0.5Co0.5Fe2O4-14.003.451.70
CoFe2O4-16.901.661.44
表4  用不同方法制备的镍钴铁氧体、镍铁氧体和钴铁氧体的吸波性能
图4  Ni x Co1 - x Fe2O4样品的tanδe、tanδm和频率曲线
图5  Ni x Co1 - x Fe2O4样品的tanδ、C0和频率曲线
图6  Ni x Co1 - x Fe2O4样品的衰减常数和频率曲线
图7  Ni0.5Co0.5Fe2O4样品的阻抗匹配、反射损耗和频率曲线
1 Zhang J W, Meng X, Wei X F, et al. An optical sensor with wide measurement range for the magnetic field detection [J]. Sens Actuators, 2023, 363A: 114757
2 Zhu B S, Mu W P, Gao Y F, et al. A sustainable and low-cost route to design FeNi alloy/carbon-decorated coal fly ash with enhanced microwave absorption [J]. Surf. Interfaces, 2023, 42: 103354
3 Ahmad H, Tariq A, Shehzad A, et al. Stealth technology: methods and composite materials—a review [J]. Polym. Compos., 2019, 40(12): 4457
4 Song J L, Gao Y, Tan G G, et al. Comparative study of microwave absorption properties of Ni–Zn ferrites obtained from different synthesis technologies [J]. Ceram. Int., 2022, 48(16): 22896
5 Ha J H, Lee S, Park B, et al. Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications [J]. J. Aust. Ceram. Soc., 2020, 56(4): 1481
6 Min D D, Jiang J L, Qing Y C, et al. Attapulgite coated polycrystalline iron fibers composites with light weight feature and enhanced microwave absorption properties [J]. J. Alloy. Compd., 2023, 948: 169817
7 He E Y, Yan T M, Ye X C, et al. Preparation of FeSiAl–Fe3O4 reinforced graphene/polylactic acid composites and their microwave absorption properties [J]. J. Mater. Sci., 2023, 58(28): 11647
8 Raju V S R. EM wave absorption of NiCuCoZn ferrites for use in ultra-high-frequency applications [J]. J. Mater. Sci.: Mater. Electron., 2022, 33(16): 13198
9 Sadrolhosseini A R, Naseri M. Investigation of corrosiveness biodiesel blends using polypyrrole chitosan-cobalt/ferrite nanocomposite [J]. Prot. Met. Phys. Chem. Surf., 2019, 55(1): 72
10 Bamburov A D, Markov A A, Leonidov I A, et al. The impact of Ba substitution on high-temperature transport in lanthanum-strontium ferrite [J]. J. Solid State Electrochem., 2018, 22(3): 899
11 Xu L J, Li Z, Xiao F N, et al. Properties and microstructure of oxide dispersion strengthened tungsten alloy prepared by liquid-phase method: a review [J]. Tungsten, 2023, 5(4): 481
12 Tan S H, Yan G Q, Yu D Y. Research progress of hydrothermal preparation and properties for spinel ferrite/titanium dioxide composites [J]. Micronanoelectron. Technol., 2021, 58(1): 30
12 谈尚华, 闫共芹, 余冬燕. 尖晶石型铁氧体/TiO2复合材料的水热法制备及性能研究进展 [J]. 微纳电子技术, 2021, 58(1): 30
13 Yun Y H, Liu Y L, Zhang W. Study on microwave absorption properties of nanometer Ni0.5Zn0.5-Ce x Fe2 - x O4 ferrite by chemistry co-precipitation method [J]. J. Mater. Eng., 2008, (3): 58
13 云月厚, 刘永林, 张 伟. 化学共沉淀法制备的纳米Ni0.5Zn0.5Ce x -Fe2 - x O4铁氧体微波吸收特性研究 [J]. 材料工程, 2008, (3): 58
14 Li W, Zhang Z L, Lv Y Y, et al. Ultralight coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance [J]. Appl. Surf. Sci., 2022, 571: 151349
15 Lin W H, Wang Z J. Fabrication of core-shell NiFe2O4@C@PPy composite microspheres with efficient microwave absorption properties [J]. Mater. Lett., 2023, 352: 135212
16 Zhang Y Q, Qiu Q, Zhang X. Preparation and microwave absorbing property of cobalt and nickel ferrite nanopowders [J]. J. Magn. Mater. Devices, 2009, 40(5): 30
16 张晏清, 邱 琴, 张 雄. 纳米钴、镍铁氧体的制备与吸波性能 [J]. 磁性材料及器件, 2009, 40(5): 30
17 Banaj L, Agrawal S. Dielectric behavior of Zr4+ doped MgFe2O4 spinel ferrite synthesized by solid-state reaction method [J]. Curr. Appl. Phys., 2023, 56: 47
18 Gao J, Ma Z J, Liu F L, et al. Synthesis and electromagnetic wave absorption properties of Gd-Co ferrite@carbon core-shell structure composites [J]. Rare Met., 2023, 42(1): 254
19 Tang C, Yang J Y, Deng W B, et al. Design of ultralight and stable Ti3C2T x /SiCnw hybrid aerogel with hierarchical structure and heterogeneous interface for electromagnetic wave absorption [J]. Carbon, 2024, 218: 118697
20 Ma Z J, Mang C Y, Wang J C, et al. Influence of doping with metal ions Co2+, Mn2+ and Cu2+ on absorbability of nano Ni-Zn ferrite [J]. Chin. J. Mater. Res., 2017, 31(12): 909
20 马志军, 莽昌烨, 王俊策 等. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响 [J]. 材料研究学报, 2017, 31(12): 909
doi: 10.11901/1005.3093.2017.403
21 Duan H Z, Chen G H, Zhou F L, et al. Preparation and properties of nickel substituted cobalt ferrite hollow microspheres [J]. Chin. J. Inorg. Chem., 2015, 31(11): 2181
21 段红珍, 陈国红, 周芳灵 等. 纳米镍钴铁氧体空心微球的制备与性能 [J]. 无机化学学报, 2015, 31(11): 2181
22 Trinadh B, Suresh J, Patta G R, et al. Structural, optical, electrical and magnetic properties of aluminum substituted Co-Cu-Zn nano-crystalline ferrites [J]. Solid State Commun., 2023, 376: 115360
23 Guo W Q, Hong B, Xu J C, et al. CNTs-improved electromagnetic wave absorption performance of Sr-doped Fe3O4/CNTs nanocomposites and physical mechanism [J]. Diam. Relat. Mater., 2024, 141: 110699
24 Tian F, Gao Y, Wang A P, et al. Effect of Mn substitution on structural, magnetic and microwave absorption properties of Co2Y hexagonal ferrite [J]. J. Magn. Magn. Mater., 2023, 587: 171229
25 Wang C, Chen N K, Xiao Y Y, et al. Exceeding natural resonance frequency limit and enhanced microwave absorption performance of Fe3O4 nanorods coated with SiO2 layer [J]. Ceram. Int., 2023, 49(22): 36233
26 Chi S P, Zhu S J, Zhu Y, et al. Preparation and soft magnetic properties of FeNi@Al2O3 composites [J]. J. Supercond. Nov. Magn., 2023, 36: 1703
27 Xie Y X, Guo Y Y, Cheng T T, et al. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite [J]. Chem. Eng. J., 2023, 457: 141205
28 Li D R, Liang X H, Quan B, et al. Investigating the synergistic impedance match and attenuation effect of Co@C composite through adjusting the permittivity and permeability [J]. Mater. Res. Express, 2017, 4(3): 035604
29 Du H Z, Zhang W M, Wang L, et al. Heterostructured C@Fe3O4@FeSiCr composite absorbing material derived from MIL-88(Fe)@FeSiCr [J]. J. Alloys Compd., 2023, 968: 172129
30 Zhou Y H, Zhuge X, An P, et al. First-principles investigations on MXene-blue phosphorene and MXene-MoS2 transistors [J]. Nanotechnology, 2020, 31(39): 395203
31 Ge Y Q, Li C P, Waterhouse G I N, et al. ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions [J]. Ceram. Int., 2021, 47(2): 1728
[1] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] 董宇航, 刘春忠, 张洪宁, 卢天倪, 李娜, 黄震威, 马驰野. 渗氮对SmFeN合金粉末吸波性能的影响[J]. 材料研究学报, 2024, 38(10): 751-758.
[4] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 332-342.
[5] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
[6] 朱晓东, 王娟, 马洋, 罗建军, 喻林, 冯威. 热处理对Ag-ZnO异质结构光催化性能的影响[J]. 材料研究学报, 2020, 34(10): 770-776.
[7] 陈新乐,梁森,闫盛宇,郑长升,王玲. 嵌入式共固化高阻尼电磁吸波复合材料[J]. 材料研究学报, 2020, 34(1): 64-72.
[8] 张达理,刘育建,方俊. 低熔点玻璃粉包覆FeSiAl合金的结构和电磁性能[J]. 材料研究学报, 2019, 33(6): 475-480.
[9] 王信刚,汪兴京,夏龙,徐伟. 羰基铁粉改性环氧树脂/乙基纤维素微胶囊的吸波性能[J]. 材料研究学报, 2019, 33(11): 824-830.
[10] 景红霞, 高明星, 王星梅, 裴王军, 焦纬洲. 稀土Ce3+掺杂纳米CoFe2O4的制备及其吸波性能[J]. 材料研究学报, 2018, 32(6): 449-454.
[11] 王彦惠, 陈树江, 李国华, 田琳, 孙丽杰. 用碳热还原法合成镁铁铝复合尖晶石[J]. 材料研究学报, 2018, 32(5): 365-370.
[12] 褚海荣, 陈平, 于祺, 徐东卫. FeCo/石墨烯的制备和吸波性能[J]. 材料研究学报, 2018, 32(3): 161-167.
[13] 李琳, 李东旭, 张树鹏, 王立国. 脂肪酸/SiO2复合相变材料的制备和性能[J]. 材料研究学报, 2017, 31(8): 591-596.
[14] 高正源,曹献龙,刘浪,方轶琉,胡琳盛. 镁合金表面有机/无机杂化涂层的性能[J]. 材料研究学报, 2017, 31(3): 211-218.
[15] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.