Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 113-125    DOI: 10.11901/1005.3093.2024.026
  研究论文 本期目录 | 过刊浏览 |
长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响
袁鸿渊1, 张思倩1(), 王栋2, 张英建3, 马力3, 于明涵2, 张浩宇1, 周舸1, 陈立佳1
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所高温结构材料研究部 沈阳 110016
3 东北大学材料科学与工程学院 沈阳 110819
Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy
YUAN Hongyuan1, ZHANG Siqian1(), WANG Dong2, ZHANG Yingjian3, MA Li3, YU Minghan2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1
1 School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
引用本文:

袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
Hongyuan YUAN, Siqian ZHANG, Dong WANG, Yingjian ZHANG, Li MA, Minghan YU, Haoyu ZHANG, Ge ZHOU, Lijia CHEN. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. Chinese Journal of Materials Research, 2025, 39(2): 113-125.

全文: PDF(45814 KB)   HTML
摘要: 

将一种热障涂层/DZ411镍基高温合金体系分别在900和1000 ℃进行长时热暴露,使用扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)等手段表征涂层/基体界面以研究其微观组织的演变行为。结果表明:随着热暴露时间的延长基体/涂层界面(CSI)下方的基体发生再结晶,σ相的析出方向与CSI呈45°角。在900和1000 ℃热暴露的二次反应区(SRZ)与拓扑密堆相(TCP)的演变显著不同。在900 ℃热暴露100 h后富Cr相弥散分布在混乱的γ'相组成的互扩散区(IDZ),而在1000 ℃热暴露100 h后IDZ、SRZ由胞状再结晶组成,富Cr相的析出不明显。在900 ℃热暴露500~2000 h后IDZ、SRZ逐渐长大,富Cr相在再结晶晶界附近沿着与CSI呈45°角的方向析出;在1000 ℃热暴露后富Cr相在再结晶晶界下方聚集析出,SRZ逐渐退化为IDZ。长时热暴露后,界面组织的演变与元素的扩散密切相关。

关键词 金属材料镍基高温合金长时热暴露界面组织涂层/基体界面    
Abstract

Herein, the effect of long term thermal exposure at 900 and 1000 oC on the microstructure variation of the interface MCrAlY thermal barrier coating/DZ411 Ni-based directionally solidified superalloy (IC/S)was studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicate that with the extension of thermal exposure time, the substrate beneath the IC/S undergoes recrystallization, the orientation of σ-phase precipitates is 45° respect to the IC/S. Significant differences were observed in the evolution of secondary reaction zone (SRZ) and topologically close-packed (TCP) phases during heating process at 900 oC and 1000 oC. After being exposed at 900 oC for 100 h the granular Cr-rich phase precipitated in the interdiffusion zone (IDZ) composed of chaotically distributed γ'-phase; In contrast, IDZ and SRZ were formed after being exposed at 1000 oC for 100 h, and the precipitates of Cr-rich phase were not significant. After being exposed at 900 oC for 500 h to 2000 h, IDZ and SRZ gradually grow, and the orientation of Cr-rich phase precipitates nearby the recrystallized grain boundary with an angle 45°; However, at 1000 oC the Cr-rich phase precipitates and aggregates below the recrystallized grain boundary, and SRZ gradually degenerates into IDZ. The evolution of interface structure is closely related to the diffusion of elements after long-term heat exposure.

Key wordsmetallic materials    Ni-based superalloy    long-term thermal exposure    interface microstructure    coating/substrate interface
收稿日期: 2024-01-01     
ZTFLH:  TG 132.32  
基金资助:国家科技重大项目(J2019-IV-0006-0074);国家科技重大项目(J2019-VI-0010-0124);国家自然科学基金(52071219);燃气轮机项目科学中心资助(P2021-AB-IV-001-002)
通讯作者: 张思倩,教授,sqzhang@alum.imr.ac.cn,研究方向为单晶高温合金变形损伤机制
Corresponding author: ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn
作者简介: 袁鸿渊,男,1998年生,硕士生
CoCrAlTiTaWMoCYNi
DZ4119.013.53.04.62.53.51.30.1-Bal.
NiCoCrAlY332210-----0.4Bal.
表1  实验合金和涂层的名义成分
图1  喷涂后热障涂层/合金截面形貌、CSI截面形貌及元素分布
AlCrCoYONi
β phase14.115.528.80.8-Bal.
γ phase4.127.042.10.3-Bal.
Al2O353.02.22.1-40.8Bal.
表2  涂层中各相的成分
图2  长时热暴露后TBC涂层/合金截面BSE图像
Thermal exposure conditionA(Al-Cr-Co-Ni)B(Al-Cr-Co-Ni)C(Al-Cr-Co-Ni)D(Al-Cr-Co-Ni)
900 ℃-500 h6-24-35-339-21-31-39-5-17-19-42
900 ℃-4500 h3-27-38-309-21-32-386-21-33-355-11-18-53
1000 ℃-500 h3-27-38-309-21-32-387-21-33-355-11-18-53
1000 ℃-500 h5-25-33-367-21-31-414-23-33-384-22-30-40
表3  图2中各区元素分布
图3  在900 ℃热暴露不同时间后CSI横截面的BSE图像
图4  900 ℃热暴露100 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
图5  在900 ℃热暴露4500 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
图6  在900 ℃热暴露1000 h后SRZ中和在1000 ℃热暴露1000 h后SDZ中的TEM 图像和选区衍射花样(SAD)
图7  在1000 ℃热暴露不同时间后CSI横截面BSE图像
图8  在1000 ℃下热暴露100 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
图9  在1000 ℃热暴露4500 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
图10  IDZ + SRZ厚度之和随热暴露温度和时间的变化
图11  在<001>方向上受力分解的示意图
1 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
2 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
3 Feng Q, Tong J Y, Zheng Y R, et al. Service induced degradation and rejuvenation of gas turbine blades [J]. Mater. China, 2012, 31(12): 21
3 冯 强, 童锦艳, 郑运荣 等. 燃气涡轮叶片的服役损伤与修复 [J]. 中国材料进展, 2012, 31(12): 21
4 Wang W, Jiang X W, Gao Z K, et al. Service temperature evaluation based on microstructural degradation of gas turbine blade after cumulative operation for 2700 h [J]. Mater. Mech. Eng., 2019, 43(3): 17
4 王 威, 姜祥伟, 高志坤 等. 基于累积服役2700 h后某燃气轮机叶片显微组织的退化判断其服役温度 [J]. 机械工程材料, 2019, 43(3): 17
5 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28(9): 659
6 Peng X, Jiang S M, Gong J, et al. Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating [J]. J. Mater. Sci. Technol., 2016, 32(6): 587
doi: 10.1016/j.jmst.2016.04.017
7 Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
8 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
9 Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Annu. Rev. Mater. Res., 2003, 33: 383
10 Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
11 Pint B A, DiStefano J R, Wright I G. Oxidation resistance: one barrier to moving beyond Ni-base superalloys [J]. Mater. Sci. Eng., 2006, 415A(1-2): 255
12 Gleeson B. Thermal barrier coatings for aeroengine applications [J]. J. Propul. Power, 2006, 22(2): 375
13 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
14 Zhang P M, Yuan K, Peng R L, et al. Long-term oxidation of MCrAlY coatings at 1000 oC and an Al-activity based coating life criterion [J]. Surf. Coat. Technol., 2017, 332: 12
15 Li W Z, Wang Q M, Bao Z B, et al. Microstructural evolution of the NiCrAlY/CrON duplex coating system and its influence on mechanical properties [J]. Mater. Sci. Eng., 2008, 498A(1-2): 487
16 Bai B, Guo H B, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2011, 53(9): 2721
17 Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2001, 32A: 2409
18 Elsaß M, Frommherz M, Scholz A, et al. Interdiffusion in MCrAlY coated nickel-base superalloys [J]. Surf. Coat. Technol., 2016, 307: 565
19 Shi L, Xin L, Wang X Y, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloy. Compd., 2015, 649: 515
20 Liang T Q, Guo H B, Peng H, et al. Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating [J]. J. Alloy. Compd., 2011, 509(34): 8542
21 Zhan X, Wang D, Ge Z C, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
22 Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
23 Ren P, Zhu S L, Wang F H. Spontaneous reaction formation of Cr23C6 diffusion barrier layer between nanocrystalline MCrAlY coating and Ni-base superalloy at high temperature [J]. Corros. Sci., 2015, 99: 219
24 Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52(5): 1746
25 Eriksson R, Yuan K, Li X H, et al. MCrAlY coating design based on oxidation–diffusion modelling. Part II: lifing aspects [J]. Surf. Coat. Technol., 2014, 253: 27
26 Yuan K, Eriksson R, Peng R L, et al. MCrAlY coating design based on oxidation-diffusion modelling. Part I: microstructural evolution [J]. Surf. Coat. Technol., 2014, 254: 79
27 Yuan K, Peng R L, Li X H, et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation [J]. Surf. Coat. Technol., 2015, 261: 86
28 Kang J, Liu Y, Zhou J, et al. Temperature-dependent evolution mechanism of interface microstructure between gradient MCrAlY coatings and nickel-based superalloy [J]. Mater. Des., 2024, 237: 112585
29 Liu L C, Fu S G, Hu Z W, et al. Thermo-mechanical analysis of TBC-film cooling system under high blowing ratio considering the effects of curvature [J]. Surf. Coat. Technol., 2023, 470: 129826
30 Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
31 Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
32 Xie G. The influence of recrystallization on the mechanical properties of DZ125L alloy and the control of recrystallization [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
32 谢 光. 再结晶对DZ125L合金力学性能的影响及再结晶的控制 [D]. 沈阳: 中国科学院金属研究所, 2008
33 Kajihara M, Gust W. Driving force for grain boundary migration during alloying by DIGM and DIR in binary systems [J]. Scr. Mater., 1998, 38(11): 1621
34 Porter A, Ralph B. The recrystallization of nickel-base superalloys [J]. J. Mater. Sci., 1981, 16: 707
35 Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47(7): 1665
36 Shi H Y, Zhang M C, Guo J. The recrystallization mechanism of typical Ni-based superalloys [J]. Rare. Metal. Mat. Eng., 2023, 52(1): 63
36 史宸伊, 张麦仓, 郭晶. 典型镍基高温合金的再结晶机理 [J]. 稀有金属材料与工程, 2023, 52(1): 63
37 Giouse J B, White K, Tromas C. Nanoindentation characterization of the surface mechanical properties of a 17-4PH stainless steel substrate treated with grit blasting and coated with a Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2019, 368: 119
38 Wu J, Jiang X, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
39 Jin H X, Zhang J X, Zhang Y J, et al. Effects of the orientation relationships between TCP phases and matrix on the morphologies of TCP phases in Ni-based single crystal superalloys [J]. Mater. Charact., 2022, 183: 111609
40 Meher S, Carroll M C, Pollock T M, et al. Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit [J]. Mater. Des., 2018, 140: 249
41 Goerler J V, Lopez-Galilea I, Roncery L M, et al. Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation [J]. Acta Mater., 2017, 124: 151
42 Liu L R, Jin T, Zhao N R, et al. Microstructural evolution of a single crystal nickel-base superalloy during thermal exposure [J]. Mater. Lett., 2003, 57(29): 4540
[1] 胥聪敏 孙姝雯 朱文胜 陈志强 李城臣. 不同油水比环境下三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[7] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[8] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[9] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[10] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[11] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[12] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[13] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[14] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.