|
|
长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响 |
袁鸿渊1, 张思倩1( ), 王栋2, 张英建3, 马力3, 于明涵2, 张浩宇1, 周舸1, 陈立佳1 |
1 沈阳工业大学材料科学与工程学院 沈阳 110870 2 中国科学院金属研究所高温结构材料研究部 沈阳 110016 3 东北大学材料科学与工程学院 沈阳 110819 |
|
Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy |
YUAN Hongyuan1, ZHANG Siqian1( ), WANG Dong2, ZHANG Yingjian3, MA Li3, YU Minghan2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1 |
1 School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China |
引用本文:
袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
Hongyuan YUAN,
Siqian ZHANG,
Dong WANG,
Yingjian ZHANG,
Li MA,
Minghan YU,
Haoyu ZHANG,
Ge ZHOU,
Lijia CHEN.
Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. Chinese Journal of Materials Research, 2025, 39(2): 113-125.
1 |
Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
|
2 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
|
2 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
|
3 |
Feng Q, Tong J Y, Zheng Y R, et al. Service induced degradation and rejuvenation of gas turbine blades [J]. Mater. China, 2012, 31(12): 21
|
3 |
冯 强, 童锦艳, 郑运荣 等. 燃气涡轮叶片的服役损伤与修复 [J]. 中国材料进展, 2012, 31(12): 21
|
4 |
Wang W, Jiang X W, Gao Z K, et al. Service temperature evaluation based on microstructural degradation of gas turbine blade after cumulative operation for 2700 h [J]. Mater. Mech. Eng., 2019, 43(3): 17
|
4 |
王 威, 姜祥伟, 高志坤 等. 基于累积服役2700 h后某燃气轮机叶片显微组织的退化判断其服役温度 [J]. 机械工程材料, 2019, 43(3): 17
|
5 |
Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28(9): 659
|
6 |
Peng X, Jiang S M, Gong J, et al. Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating [J]. J. Mater. Sci. Technol., 2016, 32(6): 587
doi: 10.1016/j.jmst.2016.04.017
|
7 |
Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
|
8 |
Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
|
9 |
Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Annu. Rev. Mater. Res., 2003, 33: 383
|
10 |
Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
|
11 |
Pint B A, DiStefano J R, Wright I G. Oxidation resistance: one barrier to moving beyond Ni-base superalloys [J]. Mater. Sci. Eng., 2006, 415A(1-2): 255
|
12 |
Gleeson B. Thermal barrier coatings for aeroengine applications [J]. J. Propul. Power, 2006, 22(2): 375
|
13 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
|
14 |
Zhang P M, Yuan K, Peng R L, et al. Long-term oxidation of MCrAlY coatings at 1000 oC and an Al-activity based coating life criterion [J]. Surf. Coat. Technol., 2017, 332: 12
|
15 |
Li W Z, Wang Q M, Bao Z B, et al. Microstructural evolution of the NiCrAlY/CrON duplex coating system and its influence on mechanical properties [J]. Mater. Sci. Eng., 2008, 498A(1-2): 487
|
16 |
Bai B, Guo H B, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2011, 53(9): 2721
|
17 |
Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2001, 32A: 2409
|
18 |
Elsaß M, Frommherz M, Scholz A, et al. Interdiffusion in MCrAlY coated nickel-base superalloys [J]. Surf. Coat. Technol., 2016, 307: 565
|
19 |
Shi L, Xin L, Wang X Y, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloy. Compd., 2015, 649: 515
|
20 |
Liang T Q, Guo H B, Peng H, et al. Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating [J]. J. Alloy. Compd., 2011, 509(34): 8542
|
21 |
Zhan X, Wang D, Ge Z C, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
|
22 |
Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
|
23 |
Ren P, Zhu S L, Wang F H. Spontaneous reaction formation of Cr23C6 diffusion barrier layer between nanocrystalline MCrAlY coating and Ni-base superalloy at high temperature [J]. Corros. Sci., 2015, 99: 219
|
24 |
Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52(5): 1746
|
25 |
Eriksson R, Yuan K, Li X H, et al. MCrAlY coating design based on oxidation–diffusion modelling. Part II: lifing aspects [J]. Surf. Coat. Technol., 2014, 253: 27
|
26 |
Yuan K, Eriksson R, Peng R L, et al. MCrAlY coating design based on oxidation-diffusion modelling. Part I: microstructural evolution [J]. Surf. Coat. Technol., 2014, 254: 79
|
27 |
Yuan K, Peng R L, Li X H, et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation [J]. Surf. Coat. Technol., 2015, 261: 86
|
28 |
Kang J, Liu Y, Zhou J, et al. Temperature-dependent evolution mechanism of interface microstructure between gradient MCrAlY coatings and nickel-based superalloy [J]. Mater. Des., 2024, 237: 112585
|
29 |
Liu L C, Fu S G, Hu Z W, et al. Thermo-mechanical analysis of TBC-film cooling system under high blowing ratio considering the effects of curvature [J]. Surf. Coat. Technol., 2023, 470: 129826
|
30 |
Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
|
31 |
Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
|
32 |
Xie G. The influence of recrystallization on the mechanical properties of DZ125L alloy and the control of recrystallization [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
|
32 |
谢 光. 再结晶对DZ125L合金力学性能的影响及再结晶的控制 [D]. 沈阳: 中国科学院金属研究所, 2008
|
33 |
Kajihara M, Gust W. Driving force for grain boundary migration during alloying by DIGM and DIR in binary systems [J]. Scr. Mater., 1998, 38(11): 1621
|
34 |
Porter A, Ralph B. The recrystallization of nickel-base superalloys [J]. J. Mater. Sci., 1981, 16: 707
|
35 |
Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47(7): 1665
|
36 |
Shi H Y, Zhang M C, Guo J. The recrystallization mechanism of typical Ni-based superalloys [J]. Rare. Metal. Mat. Eng., 2023, 52(1): 63
|
36 |
史宸伊, 张麦仓, 郭晶. 典型镍基高温合金的再结晶机理 [J]. 稀有金属材料与工程, 2023, 52(1): 63
|
37 |
Giouse J B, White K, Tromas C. Nanoindentation characterization of the surface mechanical properties of a 17-4PH stainless steel substrate treated with grit blasting and coated with a Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2019, 368: 119
|
38 |
Wu J, Jiang X, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
|
39 |
Jin H X, Zhang J X, Zhang Y J, et al. Effects of the orientation relationships between TCP phases and matrix on the morphologies of TCP phases in Ni-based single crystal superalloys [J]. Mater. Charact., 2022, 183: 111609
|
40 |
Meher S, Carroll M C, Pollock T M, et al. Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit [J]. Mater. Des., 2018, 140: 249
|
41 |
Goerler J V, Lopez-Galilea I, Roncery L M, et al. Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation [J]. Acta Mater., 2017, 124: 151
|
42 |
Liu L R, Jin T, Zhao N R, et al. Microstructural evolution of a single crystal nickel-base superalloy during thermal exposure [J]. Mater. Lett., 2003, 57(29): 4540
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|