Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 893-901    DOI: 10.11901/1005.3093.2023.609
  研究论文 本期目录 | 过刊浏览 |
微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能
庄超君, 胡俊辉, 鄢瑛()
华南理工大学化学与化工学院 广州 510640
Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation
ZHUANG Chaojun, HU Junhui, YAN Ying()
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

庄超君, 胡俊辉, 鄢瑛. 微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能[J]. 材料研究学报, 2024, 38(12): 893-901.
Chaojun ZHUANG, Junhui HU, Ying YAN. Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation[J]. Chinese Journal of Materials Research, 2024, 38(12): 893-901.

全文: PDF(10341 KB)   HTML
摘要: 

以苯硼酸为前驱体用化学气相沉积(CVD)法在纸状烧结不锈钢微纤载体(PSSF)表面生长出硼掺杂碳纳米管(B-CNT)膜,构成了具有梯度多孔结构的微纤复合硼掺杂碳纳米管膜无金属催化剂(B-CNTs/PSSF)。使用FE-SEM、TEM、Raman、TG和XPS等手段对其表征,研究催化剂对苯酚的湿式催化降解性能。结果表明,B-CNTs/PSSF对苯酚的降解性能比CNTs/PSSF优异,苯酚的转化率为100%,总有机碳(TOC)的转化率达到68%。根据密度泛函理论(DFT)的研究发现,产生催化性能差异的原因是,B-CNT对H2O2的吸附性能比CNT更强以及片段间的电子转移。

关键词 复合材料硼掺杂碳纳米管湿式催化氧化密度泛函理论无金属催化剂    
Abstract

A new type of boron-doped carbon nanotube (B-CNT) film was successfully grown on the surface of paper- sintered stainless steel fiber (PSSF) carrier via chemical vapor deposition (CVD) method with phenylboronic acid as precursor, constituting a metal-free composite catalyst of boron-doped carbon nanotube membrane with gradient porous structure on PSSF (B-CNTs/PSSF). The B-CNTs/PSSF was characterized by means of FE-SEM, TEM, Raman, TG and XPS, and then applied to the degradation of phenol. The results showed that the prepared B-CNTs/PSSF had a better phenol degradation performance than CNTs/PSSF without B doping, with a phenol conversion rate of 100%, a total organic carbon conversion rate of 68%. Based on the density functional theory (DFT), it was found that the difference in catalytic performance comes from the stronger adsorption and mutual electron transfer of H2O2 by B-CNT than CNT.

Key wordscomposite    boron doped carbon nanotubes    catalytic wet peroxide oxidation    density functional theory    metal-free catalyst
收稿日期: 2023-12-26     
ZTFLH:  TQ032  
基金资助:国家自然科学基金(22178122)
通讯作者: 鄢瑛,副研究员,yingyan@scut.edu.cn,研究方向为吸附与催化
Corresponding author: YAN Ying, Tel: 13902490801, E-mail: yingyan@scut.edu.cn
作者简介: 庄超君,男,1999年生,硕士生
图1  CVD法制备B-CNTs/PSSF的示意图
图2  苯酚在结构化固定床反应器上湿式催化氧化实验流程图
图3  二次煅烧的PSSF、CNTs/PSSF、B-CNTs/PSSF的SEM图和B-CNTs/PSSF的TEM像
图4  CNTs/PSSF和B-CNTs/PSSF的FTIR谱
图5  B-CNTs/PSSF和CNTs/PSSF的Raman谱
图6  B-CNTs/PSSF和CNTs/PSSF的TG曲线
图7  B-CNTs/PSSF的XPS全谱、C1s、B1s和O1s的高分辨谱
图8  不同催化剂对苯酚CWPO的催化性能
图9  CNT对H2O2的吸附构型、吸附能和电子密度差图以及B-CNT对H2O2的吸附构型和电子密度差图
1 Li H P, Meng F P. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: a review [J]. Environ. Pollut., 2023, 335: 122248
2 Tomei M C, Angelucci D M. Enhancing biodegradation of toxic industrial wastewaters in a continuous two-phase partitioning bioreactor operated with effluent recycle [J]. Process Saf. Environ. Prot., 2019, 124: 172
3 Jiao P P. Individually recovery of gallic acid and 3, 5-dimethyl-2, 4-dichlorophenol from industry wastewater by solvent extrac-tion [D]. Changsha: Hunan University, 2016
3 焦盼盼. 溶剂萃取法处理高浓度含酚有机工业废水 [D]. 长沙: 湖南大学, 2016
4 Qiao X L, Fang M X, Cen J M, et al. Progress in phenol containing wastewater treatment by extraction [J]. Technol. Water Treat., 2016, 42(4): 7
4 乔鑫龙, 方梦祥, 岑建孟 等. 萃取法处理含酚废水的研究进展 [J]. 水处理技术, 2016, 42(4): 7
5 Zhang L P, Dai J, Wei H Y, et al. Study on high efficiency extraction of phenolic-containing wastewater from coal chemical industry [J]. Coal Sci. Technol., 2019, 47(6): 219
5 章丽萍, 戴 瑾, 魏含宇 等. 煤化工含酚废水高效萃取研究 [J]. 煤炭科学技术, 2019, 47(6): 219
6 Liu J Y, Zhang X J, Huang Q, et al. Research progress on the treatment of industrial phenolic wastewater over advanced adsorbent materials [J]. Technol. Water Treat., 2021, 47(2): 16
6 刘俊逸, 张晓昀, 黄 青 等. 先进吸附材料在含酚工业废水中应用的研究进展 [J]. 水处理技术, 2021, 47(2): 16
7 Cuerda-Correa E M, Alexandre-Franco M F, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water. An overview [J]. Water, 2020, 12: 102
8 Yang S Y, Zhang A, Ren T F, et al. Surface mechanism of carbon-based materials for catalyzing peroxide degradation of organic pollutants in water [J]. Prog. Chem., 2017, 29: 539
doi: 10.7536/PC170310
8 杨世迎, 张 翱, 任腾飞 等. 炭基材料催化过氧化物降解水中有机污染物: 表面作用机制 [J]. 化学进展, 2017, 29: 539
doi: 10.7536/PC170310
9 Li X F, Liang D D, Wang C X, et al. Effective defect generation and dual reaction pathways for phenol degradation on boron-doped carbon nanotubes [J]. Environ. Technol., 2022, 43: 4455
10 Li X F, Liang D D, Wang C X, et al. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: performance and mechanisms [J]. Chemosphere, 2021, 275: 130058
11 Shao Y, Yan Y, Zhang H P. Adsorption dynamics of phenol in a fixed bed packed with activated carbon and stainless steel fiber-reinforced activated carbon paper [J]. Carbon, 2015, 93: 1087
12 Satishkumar B C, Govindaraj A, Harikumar K R, et al. Boron–carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures [J]. Chem. Phys. Lett., 1999, 300: 473
13 Chen C F, Tsai C L, Lin C L. The characterization of boron-doped carbon nanotube arrays [J]. Diamond Relat. Mater., 2003, 12: 1500
14 Sawant S V, Banerjee S, Patwardhan A W, et al. Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes [J]. Int. J. Hydrogen Energy, 2019, 44: 18193
15 Ayala P, Rümmeli M H, Gemming T, et al. CVD growth of single-walled B-doped carbon nanotubes [J]. Phys. Status Solidi, 2008, 245b: 1935
16 Koós A A, Dillon F, Obraztsova E A, et al. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes [J]. Carbon, 2010, 48: 3033
17 Sharma A, Patwardhan A, Dasgupta K, et al. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition [J]. Chem. Eng. Sci., 2019, 207: 1341
doi: 10.1016/j.ces.2019.06.030
18 Altuntepe A, Zan R. Permanent boron doped graphene with high homogeneity using phenylboronic acid [J]. J. Mol. Struct., 2021, 1230: 129629
19 Yang Y, Zhang H P, Yan Y. Synthesis of CNTs on stainless steel microfibrous composite by CVD: effect of synthesis condition on carbon nanotube growth and structure [J]. Composites, 2019, 160B: 369
20 Yang Y, Zhang H P, Huang H X, et al. Degradation of m-cresol over iron loaded carbon nanotube microfibrous composite: kinetic optimization and deactivation study [J]. Sep. Purif. Technol., 2021, 262: 118340
21 Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33: 580
doi: 10.1002/jcc.22885 pmid: 22162017
22 Hashempour M, Vicenzo A, Zhao F, et al. Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: effect of surface nano-features on CNT growth and structure [J]. Carbon, 2013, 63: 330
23 Vander Wal R L, Hall L J. Carbon nanotube synthesis upon stainless steel meshes [J]. Carbon, 2003, 41: 659
24 Huang H X. Preparation of micro-fibrous nitrogen-doped carbon nanotubes coated paper-like sintered stainless steel fibers composite catalyst for catalytic degradation of phenolic wastewater [D]. Guangzhou: South China University of Technology, 2020
24 黄浩鑫. 微纤复合氮掺杂碳纳米管膜催化剂的制备及其催化降解含酚废水特性研究 [D]. 广州: 华南理工大学, 2020
25 Huang H X, Zhang H P, Yan Y. Preparation of novel catalyst-free Fe3C nanocrystals encapsulated NCNT structured catalyst for continuous catalytic wet peroxide oxidation of phenol [J]. J. Hazard. Mater., 2021, 407: 124371
26 Keru G, Ndungu P G, Nyamori V O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes [J]. Mater. Chem. Phys., 2015, 153: 323
27 Hashim D P, Narayanan N T, Romo-Herrera J M, et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions [J]. Sci. Rep., 2012, 2: 363
doi: 10.1038/srep00363 pmid: 22509463
28 Aviles F, Cauich-Rodríguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization [J]. Carbon, 2009, 47: 2970
29 Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media [J]. Appl. Surf. Sci., 2008, 255: 2485
30 Misra A, Tyagi P K, Singh M K, et al. FTIR studies of nitrogen doped carbon nanotubes [J]. Diamond Relat. Mater., 2006, 15: 385
31 Zhang J, Zou H L, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 3712
32 Ma Y C, Foster A S, Krasheninnikov A V, et al. Nitrogen in graphite and carbon nanotubes: magnetism and mobility [J]. Phys. Rev., 2005, 72B: 205416
33 Teoh W C, Yeoh W M, Mohamed A R. Evaluation of different oxidizing agents on effective covalent functionalization of multiwalled carbon nanotubes [J]. Fuller. Nanotub. Carbon Nanostruct., 2018, 26: 846
34 Jorio A, Cancado L G. Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal [J]. Phys. Chem. Chem. Phys., 2012, 14: 125246
35 Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nat. Nanotechnol., 2013, 8: 235
doi: 10.1038/nnano.2013.46 pmid: 23552117
36 Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
pmid: 17347700
37 Kuznetsov V L, Bokova-Sirosh S N, Moseenkov S I, et al. Raman spectra for characterization of defective CVD multi-walled carbon nanotubes [J]. Phys. Status Solidi, 2014, 251b:2444
38 Sánchez-Salas R, Kashina S, Galindo R, et al. Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes [J]. Carbon, 2021, 183: 743
39 Li T J, Yeh M H, Chiang W H, et al. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reac-tion [J]. Sens. Actuators, 2017, 248B: 288
40 Tian X Y, Zhang H P, Hu C Z, et al. Efficient and continuous removal of phenol by activating PMS via nitrogen doped carbon nanotube membrane in the structured fixed bed [J]. J. Water Process Eng., 2023, 54: 104029
41 Doğan M, Selek A, Turhan O, et al. Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage [J]. Fuel, 2021, 303: 121335
42 Scaccia S, Carewska M, Prosini P P. Study of purification process of single-walled carbon nanotubes by thermoanalytical techni-ques [J]. Thermochim. Acta, 2005, 435: 209
43 Xu M Z, Lei Y X, Ren D X, et al. Synergistic effects of functional CNTs and h-BN on enhanced thermal conductivity of epoxy/cyanate matrix composites [J]. Nanomaterials, 2018, 8: 997
44 Cao Y H, Li B, Zhong G Y, et al. Catalytic wet air oxidation of phenol over carbon nanotubes: synergistic effect of carboxyl groups and edge carbons [J]. Carbon, 2018, 133: 464
45 Duan X G, Sun H Q, Kang J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons [J]. ACS Catal., 2015, 5: 4629
46 Tang L, Liu Y N, Wang J J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism [J]. Appl. Catal., 2018, 231B: 1
47 Cheng Y H, Tian Y Y, Fan X Z, et al. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media [J]. Electrochim. Acta, 2014, 143: 291
48 Suo N, Huang H, Wu A M, et al. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution [J]. Appl. Surf. Sci., 2018, 439: 329
49 Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2011, 50: 7132
doi: 10.1002/anie.201101287 pmid: 21688363
50 Liu P J, He S B, Wei H Z, et al. Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m -cresol [J]. Ind. Eng. Chem. Res., 2015, 54: 130
51 Espinosa J C, Navalón S, Primo A, et al. Graphenes as efficient metal-free fenton catalysts [J]. Chem. -Eur. J., 2015, 21: 11966
52 Feng Y C, Zhou G M, Wang G P, et al. Removal of some impurities from carbon nanotubes [J]. Chem. Phys. Lett., 2003, 375: 645
[1] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[7] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[8] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[9] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[10] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[11] 霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.
[12] 武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏. S/NiFeP/KB复合材料锂硫电池正极的性能[J]. 材料研究学报, 2024, 38(11): 828-836.
[13] 罗洪旭, 赵永华, 张家慷, 冯效迁, 张启俭, 王欢. 双功能催化剂(Cu-Co/X-MMT)的制备和性能[J]. 材料研究学报, 2024, 38(11): 872-880.
[14] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[15] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.