|
|
微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能 |
庄超君, 胡俊辉, 鄢瑛( ) |
华南理工大学化学与化工学院 广州 510640 |
|
Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation |
ZHUANG Chaojun, HU Junhui, YAN Ying( ) |
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China |
引用本文:
庄超君, 胡俊辉, 鄢瑛. 微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能[J]. 材料研究学报, 2024, 38(12): 893-901.
Chaojun ZHUANG,
Junhui HU,
Ying YAN.
Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation[J]. Chinese Journal of Materials Research, 2024, 38(12): 893-901.
1 |
Li H P, Meng F P. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: a review [J]. Environ. Pollut., 2023, 335: 122248
|
2 |
Tomei M C, Angelucci D M. Enhancing biodegradation of toxic industrial wastewaters in a continuous two-phase partitioning bioreactor operated with effluent recycle [J]. Process Saf. Environ. Prot., 2019, 124: 172
|
3 |
Jiao P P. Individually recovery of gallic acid and 3, 5-dimethyl-2, 4-dichlorophenol from industry wastewater by solvent extrac-tion [D]. Changsha: Hunan University, 2016
|
3 |
焦盼盼. 溶剂萃取法处理高浓度含酚有机工业废水 [D]. 长沙: 湖南大学, 2016
|
4 |
Qiao X L, Fang M X, Cen J M, et al. Progress in phenol containing wastewater treatment by extraction [J]. Technol. Water Treat., 2016, 42(4): 7
|
4 |
乔鑫龙, 方梦祥, 岑建孟 等. 萃取法处理含酚废水的研究进展 [J]. 水处理技术, 2016, 42(4): 7
|
5 |
Zhang L P, Dai J, Wei H Y, et al. Study on high efficiency extraction of phenolic-containing wastewater from coal chemical industry [J]. Coal Sci. Technol., 2019, 47(6): 219
|
5 |
章丽萍, 戴 瑾, 魏含宇 等. 煤化工含酚废水高效萃取研究 [J]. 煤炭科学技术, 2019, 47(6): 219
|
6 |
Liu J Y, Zhang X J, Huang Q, et al. Research progress on the treatment of industrial phenolic wastewater over advanced adsorbent materials [J]. Technol. Water Treat., 2021, 47(2): 16
|
6 |
刘俊逸, 张晓昀, 黄 青 等. 先进吸附材料在含酚工业废水中应用的研究进展 [J]. 水处理技术, 2021, 47(2): 16
|
7 |
Cuerda-Correa E M, Alexandre-Franco M F, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water. An overview [J]. Water, 2020, 12: 102
|
8 |
Yang S Y, Zhang A, Ren T F, et al. Surface mechanism of carbon-based materials for catalyzing peroxide degradation of organic pollutants in water [J]. Prog. Chem., 2017, 29: 539
doi: 10.7536/PC170310
|
8 |
杨世迎, 张 翱, 任腾飞 等. 炭基材料催化过氧化物降解水中有机污染物: 表面作用机制 [J]. 化学进展, 2017, 29: 539
doi: 10.7536/PC170310
|
9 |
Li X F, Liang D D, Wang C X, et al. Effective defect generation and dual reaction pathways for phenol degradation on boron-doped carbon nanotubes [J]. Environ. Technol., 2022, 43: 4455
|
10 |
Li X F, Liang D D, Wang C X, et al. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: performance and mechanisms [J]. Chemosphere, 2021, 275: 130058
|
11 |
Shao Y, Yan Y, Zhang H P. Adsorption dynamics of phenol in a fixed bed packed with activated carbon and stainless steel fiber-reinforced activated carbon paper [J]. Carbon, 2015, 93: 1087
|
12 |
Satishkumar B C, Govindaraj A, Harikumar K R, et al. Boron–carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures [J]. Chem. Phys. Lett., 1999, 300: 473
|
13 |
Chen C F, Tsai C L, Lin C L. The characterization of boron-doped carbon nanotube arrays [J]. Diamond Relat. Mater., 2003, 12: 1500
|
14 |
Sawant S V, Banerjee S, Patwardhan A W, et al. Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes [J]. Int. J. Hydrogen Energy, 2019, 44: 18193
|
15 |
Ayala P, Rümmeli M H, Gemming T, et al. CVD growth of single-walled B-doped carbon nanotubes [J]. Phys. Status Solidi, 2008, 245b: 1935
|
16 |
Koós A A, Dillon F, Obraztsova E A, et al. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes [J]. Carbon, 2010, 48: 3033
|
17 |
Sharma A, Patwardhan A, Dasgupta K, et al. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition [J]. Chem. Eng. Sci., 2019, 207: 1341
doi: 10.1016/j.ces.2019.06.030
|
18 |
Altuntepe A, Zan R. Permanent boron doped graphene with high homogeneity using phenylboronic acid [J]. J. Mol. Struct., 2021, 1230: 129629
|
19 |
Yang Y, Zhang H P, Yan Y. Synthesis of CNTs on stainless steel microfibrous composite by CVD: effect of synthesis condition on carbon nanotube growth and structure [J]. Composites, 2019, 160B: 369
|
20 |
Yang Y, Zhang H P, Huang H X, et al. Degradation of m-cresol over iron loaded carbon nanotube microfibrous composite: kinetic optimization and deactivation study [J]. Sep. Purif. Technol., 2021, 262: 118340
|
21 |
Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33: 580
doi: 10.1002/jcc.22885
pmid: 22162017
|
22 |
Hashempour M, Vicenzo A, Zhao F, et al. Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: effect of surface nano-features on CNT growth and structure [J]. Carbon, 2013, 63: 330
|
23 |
Vander Wal R L, Hall L J. Carbon nanotube synthesis upon stainless steel meshes [J]. Carbon, 2003, 41: 659
|
24 |
Huang H X. Preparation of micro-fibrous nitrogen-doped carbon nanotubes coated paper-like sintered stainless steel fibers composite catalyst for catalytic degradation of phenolic wastewater [D]. Guangzhou: South China University of Technology, 2020
|
24 |
黄浩鑫. 微纤复合氮掺杂碳纳米管膜催化剂的制备及其催化降解含酚废水特性研究 [D]. 广州: 华南理工大学, 2020
|
25 |
Huang H X, Zhang H P, Yan Y. Preparation of novel catalyst-free Fe3C nanocrystals encapsulated NCNT structured catalyst for continuous catalytic wet peroxide oxidation of phenol [J]. J. Hazard. Mater., 2021, 407: 124371
|
26 |
Keru G, Ndungu P G, Nyamori V O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes [J]. Mater. Chem. Phys., 2015, 153: 323
|
27 |
Hashim D P, Narayanan N T, Romo-Herrera J M, et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions [J]. Sci. Rep., 2012, 2: 363
doi: 10.1038/srep00363
pmid: 22509463
|
28 |
Aviles F, Cauich-Rodríguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization [J]. Carbon, 2009, 47: 2970
|
29 |
Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media [J]. Appl. Surf. Sci., 2008, 255: 2485
|
30 |
Misra A, Tyagi P K, Singh M K, et al. FTIR studies of nitrogen doped carbon nanotubes [J]. Diamond Relat. Mater., 2006, 15: 385
|
31 |
Zhang J, Zou H L, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 3712
|
32 |
Ma Y C, Foster A S, Krasheninnikov A V, et al. Nitrogen in graphite and carbon nanotubes: magnetism and mobility [J]. Phys. Rev., 2005, 72B: 205416
|
33 |
Teoh W C, Yeoh W M, Mohamed A R. Evaluation of different oxidizing agents on effective covalent functionalization of multiwalled carbon nanotubes [J]. Fuller. Nanotub. Carbon Nanostruct., 2018, 26: 846
|
34 |
Jorio A, Cancado L G. Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal [J]. Phys. Chem. Chem. Phys., 2012, 14: 125246
|
35 |
Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nat. Nanotechnol., 2013, 8: 235
doi: 10.1038/nnano.2013.46
pmid: 23552117
|
36 |
Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
pmid: 17347700
|
37 |
Kuznetsov V L, Bokova-Sirosh S N, Moseenkov S I, et al. Raman spectra for characterization of defective CVD multi-walled carbon nanotubes [J]. Phys. Status Solidi, 2014, 251b:2444
|
38 |
Sánchez-Salas R, Kashina S, Galindo R, et al. Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes [J]. Carbon, 2021, 183: 743
|
39 |
Li T J, Yeh M H, Chiang W H, et al. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reac-tion [J]. Sens. Actuators, 2017, 248B: 288
|
40 |
Tian X Y, Zhang H P, Hu C Z, et al. Efficient and continuous removal of phenol by activating PMS via nitrogen doped carbon nanotube membrane in the structured fixed bed [J]. J. Water Process Eng., 2023, 54: 104029
|
41 |
Doğan M, Selek A, Turhan O, et al. Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage [J]. Fuel, 2021, 303: 121335
|
42 |
Scaccia S, Carewska M, Prosini P P. Study of purification process of single-walled carbon nanotubes by thermoanalytical techni-ques [J]. Thermochim. Acta, 2005, 435: 209
|
43 |
Xu M Z, Lei Y X, Ren D X, et al. Synergistic effects of functional CNTs and h-BN on enhanced thermal conductivity of epoxy/cyanate matrix composites [J]. Nanomaterials, 2018, 8: 997
|
44 |
Cao Y H, Li B, Zhong G Y, et al. Catalytic wet air oxidation of phenol over carbon nanotubes: synergistic effect of carboxyl groups and edge carbons [J]. Carbon, 2018, 133: 464
|
45 |
Duan X G, Sun H Q, Kang J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons [J]. ACS Catal., 2015, 5: 4629
|
46 |
Tang L, Liu Y N, Wang J J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism [J]. Appl. Catal., 2018, 231B: 1
|
47 |
Cheng Y H, Tian Y Y, Fan X Z, et al. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media [J]. Electrochim. Acta, 2014, 143: 291
|
48 |
Suo N, Huang H, Wu A M, et al. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution [J]. Appl. Surf. Sci., 2018, 439: 329
|
49 |
Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2011, 50: 7132
doi: 10.1002/anie.201101287
pmid: 21688363
|
50 |
Liu P J, He S B, Wei H Z, et al. Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m -cresol [J]. Ind. Eng. Chem. Res., 2015, 54: 130
|
51 |
Espinosa J C, Navalón S, Primo A, et al. Graphenes as efficient metal-free fenton catalysts [J]. Chem. -Eur. J., 2015, 21: 11966
|
52 |
Feng Y C, Zhou G M, Wang G P, et al. Removal of some impurities from carbon nanotubes [J]. Chem. Phys. Lett., 2003, 375: 645
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|