Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 632-640    DOI: 10.11901/1005.3093.2023.552
  研究论文 本期目录 | 过刊浏览 |
碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究
张恒宇1,2, 黄照单3, 段体岗2(), 温青1(), 李若灿1,2, 吴厚燃2, 马力2, 张海兵2
1.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2.洛阳船舶材料研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
3.山东电力建设第三工程有限公司咨询院 青岛 266200
Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater
ZHANG Hengyu1,2, HUANG Zhaodan3, DUAN Tigang2(), WEN Qing1(), LI Ruocan1,2, WU Houran2, MA Li2, ZHANG Haibing2
1.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2.National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
3.Sepco III Electric Power Construction Co., LTD, Qingdao 266200, China
引用本文:

张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
Hengyu ZHANG, Zhaodan HUANG, Tigang DUAN, Qing WEN, Ruocan LI, Houran WU, Li MA, Haibing ZHANG. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. Chinese Journal of Materials Research, 2024, 38(8): 632-640.

全文: PDF(10523 KB)   HTML
摘要: 

以碳布为基体将室温原位生长、高温碳化处理与电沉积方法相结合,制备出具有高活性的铂@钴@氮碳(Pt@Co-N-C@CC)复合材料,研究了这种多层级复合催化阴极材料在海水介质中的电催化氧还原性能。结果表明,这种复合材料具有底层微孔Co-N-C、表层Pt纳米簇的多层次包覆结构,其中ZIF8/ZIF67混合碳化底层提供铂负载位点,有利于Pt纳米颗粒的附着生长,提高了Pt纳米颗粒的分散性。与商业Pt/C催化剂(-0.028 V和-0.401 V vs. Ag/AgCl)相比,Pt@Co-N-C@CC复合材料的氧还原性能较高,其氧还原起始电位和半波电位分别0.075 V和-0.156 V (vs. Ag/AgCl);与Mg组装的电池,Pt@Co-N-C@CC在5 mA/cm2下的恒流放电电压高于0.8 V,最大功率密度达到7.6 mW/cm2。这种金属有机骨架ZIF8/67衍生的Co-N-C结构与纳米Pt复合,有利于提高Pt的催化活性和抗Cl-毒化。

关键词 复合材料碳基Pt@Co多层次电极氧还原反应海水溶解氧电池    
Abstract

Aiming at the problem of low chloride-poisoning resistance capacity and low electrocatalytic activity for the catalytic material of oxygen reduction, hierarchical composite material was synthesized and its oxygen reduction process was studied in the natural seawater. Herein, A highly active material of hierarchical Pt@Co@-N-C composite coating on carbon cloth was prepared via a combined technique composed of in-situ growth method, high-temperature carbonization treatment and electrodeposition. Characterization results indicate that the as-synthesized composite displays a multi-layered core-shell encapsulation structure with carbon fibers serving as the core matrix, ZIF8/ZIF67-deriving microporous Co-N-C as the bottom coating and the electrodeposited Pt nanoclusters as the apparent catalytic coating. Whereinto, the Co-N-C coating provides lots of depositing sites for improving the dispersibility of Pt nanoparticles, expediting the uniform growth of Pt nanoclusters. Electrochemical results show that in comparison to the commercial Pt/C catalyst, Pt@Co-N-C@CC possesses better electrocatalytic oxygen reduction performance, i.e.which presents onset potential 0.075 V and half-wave potential -0.156 V all much more positive than those of the commercial ones -0.028 V and -0.401 V (vs. Ag/AgCl) respectively. The seawater battery assembling Pt@Co-N-C@CC and Mg shows higher cell voltage of above 0.8 V and maximum power density of 7.6 mW/cm2, in contrary, below 0.5 V and 3.9 mW/cm2 respectively for the assembling Pt/C and Mg. These prove that the high-efficiency recombination of ZIF8/ZIF67-deriving Co-N-C and Pt nanoclusters benefits to enhance the catalytic activity and improve the chloride-poisoning resistance.

Key wordscomposite    carbon-base Pt@Co hierarchical electrode    oxygen reduction reaction    seawater dissolved oxygen battery
收稿日期: 2023-11-22     
ZTFLH:  TQ152  
通讯作者: 段体岗,高级工程师,duantigang@sunrui.net,研究方向为海洋腐蚀与防护、化学能源
温青,教授,wenqing@hrbeu.edu.cn,研究方向为微生物燃料电池、电催化
Corresponding author: DUAN Tigang, Tel: 15725237618, E-mail: duantigang@sunrui.net
WEN Qing, Tel: (0451)82518596, E-mail: wenqing@hrbeu.edu.cn
作者简介: 张恒宇,男,1998年生,硕士生
图1  ZIF8/67@CC和Co-N-C@CC的SEM照片、Pt@Co-N-C@CC的SEM照片以及Pt@Co-N-C@CC的TEM照片
图2  Pt@Co-N-C@CC的HRTEM图像
图3  Pt@N-C@CC与Pt@Co-N-C@CC的XPS总谱图、Pt@Co-N-C@CC的Pt,Co,N的精细谱图以及Pt@N-C@CC的Pt,N精细谱
图4  Pt@Co-N-C@CC, Pt@N-C@CC,Co-N-C@CC的拉曼图像以及Pt@Co-N-C@CC和Pt@N-C@CC的XRD谱
图5  Pt@Co-N-C@CC,Pt@N-C@CC, Co-N-C@CC在不同扫速下的CV图像、拟合所得的Cdl值以及Pt@Co-N-C@CC,Pt@N-C@CC与Pt/C-20%在饱和O2与饱和N2下的CV图像
图6  Pt@Co-N-C@CC在不同扫速下的LSV、不同催化材料在1600 r/min下的LSV图像、不同催化材料的氧还原起始电位与半波电位、催化材料拟合所得的的Tafel斜率、Pt@Co-N-C@CC的稳定性测试以及Pt@Co-N-C@CC和Pt/C-20%@CC的恒电流极化测试
图7  Pt/C-20%@CC和Pt@Co-N-C@CC的功率密度曲线
1 Moore T S, Mullaugh K M, Holyoke R R, et al. Marine chemical technology and sensors for marine waters: Potentials and limits [J]. Annu. Rev. Mar. Sci., 2009, 1(1): 91
2 Hasvold Ø, Størkersen N J, Forseth S, et al. Power sources for autonomous underwater vehicles [J]. J. Power Sources, 2006, 162(2): 935
3 Chen J, Xu W, Wang X, et al. Progress and applications of seawater-activated batteries [J]. Sustainability, 2023, 15(2): 16
4 Shi Y, Peng C, Feng Y, et al. Microstructure and electrochemical corrosion behavior of extruded Mg-Al-Pb-La alloy as anode for seawater-activated battery [J]. Mater. Design, 2017, 124: 24
5 Tu N D K, Park S O, Park J, et al. Pyridinic-nitrogen-containing carbon cathode: efficient electrocatalyst for seawater batteries [J]. ACS Appl. Energy Mater., 2020, 3(2): 1602
6 Hwang S M, J-spark, Kim Y, et al. Rechargeable seawater batter-ies—from concept to applications [J]. Adv. Mater., 2019, 31(20): 18
7 Liu Q, Yan Z, Wang E, et al. A high-specific-energy magnesium/water battery for full-depth ocean application [J]. Int. J. Hydrogen Energ., 2017, 42(36): 45
8 Zhang J, Yin S, Yin H M. Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold [J]. ACS Appl. Energy Mater., 2020, 3(12): 56
9 Zhang L, Li H, Zhang J. Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution [J]. J. Power Sources, 2014, 42
10 Yan X, Jia Y, Zhang L, et al. Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media [J]. Chinese J. Catal., 2017, 38(6): 11
11 Kim Y, Kim J K, Vaalma C, et al. Optimized hard carbon derived from starch for rechargeable seawater batteries [J]. Carbon, 2018, 129(5): 64
12 Ziegelbauer J M, Murthi V S, O'laoire C, et al. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications [J]. Electrochim. Acta, 2008, 53(17): 87
13 Von Deak D, Singh D, King J C, et al. Use of carbon monoxide and cyanide to probe the active sites on nitrogen-doped carbon catalysts for oxygen reduction [J]. Appl. Catal. B-Environ. Energy, 2012, 113: 26
14 Zeng W J, Tong L, Liu J, et al. Annealing-temperature-dependent relation between alloying degree, particle size, and fuel cell performance of PtCo catalysts [J]. J. Electroanal. Chem., 2022, 922: 19
15 Mayrhofer K J J, Juhart V, Hartl K, et al. Adsorbate-induced surface segregation for core-shell nanocatalysts [J]. Angew. Chem. Int. Edit., 2009, 48(19): 29
16 Sun J K, Pan Y W, Xu M Q, et al. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR [J]. Nano Res., 2023, 59: 14
17 Schmidt T J, Paulus U A, Gasteiger H A, et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions [J]. J. Electroanal. Chem., 2001, 508(1): 41
18 Gan J, Zhang J, Zhang B, et al. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition [J]. J. Energy Chem., 2020, 45: 59
doi: 10.1016/j.jechem.2019.09.024
19 Ma N, Wang Y, Zhang Y, et al. First-principles screening of Pt doped Ti2CNL (N  =  O, S and Se, L  =  F, Cl, Br and I) as high-performance catalysts for ORR/OER [J]. Appl. Surf. Sci., 2022, 596: 153
20 Dong Y, Liu Y, He Y, et al. Facet-orientated Pd core impels quasi-monolayer Pt shell to boost the oxygen-reduction electrocatalysis [J]. ACS Sustainable Chem. Eng., 2023, 11(26): 23
21 Konnerth H, Matsagar B M, Chen S S, et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production [J]. Coordin. Chem. Rev., 2020, 416: 21
22 Liang Z, Guo H, Lei H, et al. Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction [J]. Chin. Chem. Lett., 2022, 33(8): 3999
23 Liu M, Su H, Cheng W, et al. Synergetic dual-ion centers boosting metal organic framework alloy catalysts toward efficient two electron oxygen reduction [J]. Small, 2022, 18(27): 220
24 Yang J, Li W H, Xu K, et al. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction [J]. Angew. Chem. Int. Edit., 2022, 61(16): e202200366
25 Zheng J N, Lv J J, Li S S, et al. One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation [J]. J. Mater. Chem. A, 2014, 2(10): 45
26 Xu J, Liu X, Chen Y, et al. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis [J]. J. Mater. Chem., 2012, 22(44): 59
27 Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures [J]. Adv. Mater., 2016, 28(11): 99
28 Wang M, Yang Y, Liu X, et al. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction [J]. Nanoscale, 2017, 9(22): 41
29 Kong F, Fan X, Kong A, et al. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts [J]. Adv. Funct. Mater., 2018, 28(51): 39
30 Pei F, Chen M, Kong F, et al. In-situ coupling FeN nanocrystals with Fe/Fe3C nanoparticles to N-doped carbon nanosheets for efficient oxygen electrocatalysis [J]. Appl. Surf. Sci., 2022, 587: 15
31 Li Y, Xiong D, Liu Y, et al. Correlation between electrochemical performance degradation and catalyst structural parameters on polymer electrolyte membrane fuel cell [J]. Nanotechnol. Rev., 2019, 8(1): 493
32 Meng R, Zhang C, Lu Z, et al. An oxygenophilic atomic dispersed Fe N C catalyst for lean-oxygen seawater batteries [J]. Adv. Energy Mater., 2021, 11(23): 105
[1] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[2] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[3] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[4] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[5] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[6] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[7] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[8] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[9] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[10] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[11] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[12] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[13] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[14] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[15] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.