|
|
K4169合金的高温低周疲劳行为 |
刘庆澳1,2, 张伟红1,2( ), 王志远1,2, 孙文儒1,2( ) |
1.中国科学院金属研究所 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC |
LIU Qing'ao1,2, ZHANG Weihong1,2( ), WANG Zhiyuan1,2, SUN Wenru1,2( ) |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
Qing'ao LIU,
Weihong ZHANG,
Zhiyuan WANG,
Wenru SUN.
Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. Chinese Journal of Materials Research, 2024, 38(8): 621-631.
1 |
El-bagoury N, Matsuba T, Yamamoto K, et al. Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy [J]. Mater. Trans., 2005, 46(11): 2478
|
2 |
Liu R, Wang X T, Hu P P, et al. Low cycle fatigue behavior of micro-grain casting K4169 superalloy at room temperature [J]. Prog. Nat. Sci., 2022, 32(6): 693
|
3 |
Zhang L K, Wu X D, Zou Y, et al. Effect of Nb content on microstructure and mechanical properties of K4169-type superalloy [J]. J. Mater. Eng. Perform., 2022, 31(5): 4204
|
4 |
Wu Y, Liu Y H, Kang M D, et al. Microstructure evolution of K4169 alloy during cyclic loading [J]. Acta Metall. Sin., 2020, 56(9): 1185
doi: 10.11900/0412.1961.2020.00026
|
4 |
吴 贇, 刘雅辉, 康茂东 等. K4169合金循环加载过程中的微观组织演变 [J]. 金属学报, 2020, 56(9): 1185
|
5 |
Teng Y J, Ou M Q, Xing W W, et al. Effect of nitrogen content on the microstructure and mechanical properties of K4169 alloy [J]. Rare Metal Mat. Eng., 2019, 48(5): 1505
|
5 |
滕雨均, 欧美琼, 邢炜伟 等. 氮对K4169合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2019, 48(5): 1505
|
6 |
Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, 355(1-2): 114
|
7 |
Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 690: 137
|
8 |
Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. Int. J. Fatigue, 2009, 31(11-12): 1966
|
9 |
Bhaumik S K, Sujata M, Venkataswamy M A. Fatigue failure of aircraft components [J]. Eng. Fail. Anal., 2008, 15(6): 675
|
10 |
Lingli S B, Han Y F, Wang J, et al. Effects of heat treatment on microstructure and stress rupture properties of K4169 investment castings after hot isostatically pressed treatment [J]. Special Casting & Nonferrous Alloys, 2016, 36(10): 1013
|
10 |
凌李石保, 韩延峰, 王 俊 等. 热处理对热等静压K4169合金组织及高温持久性的影响 [J]. 特种铸造及有色合金, 2016, 36(10): 1013
|
11 |
Huang T W, Liu L, Yang A M, et al. Effect of structure refinement by addition of refiner on LCF properties of cast superalloy K4169 [J]. J. Mater. Eng., 2004, (11): 22
|
11 |
黄太文, 刘 林, 杨爱民 等. 化学法细化高温合金K4169的低周疲劳性能研究 [J]. 材料工程, 2004, (11): 22
|
12 |
Wang K, Wang J, Kang M D, et al. Effect of hot isostatic pressing on microstructures and properties of superalloy K4169 [J]. Chin. J. Nonferr. Mater., 2014, 24(5): 1224
|
12 |
王 恺, 王 俊, 康茂东 等. 热等静压对K4169高温合金组织与性能的影响 [J]. 中国有色金属学报, 2014, 24(5): 1224
|
13 |
Liu Y H, Kang M D, Wu Y, et al. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments [J]. Int. J. Fatigue, 2018, 108: 79
|
14 |
Fouenier D, Pineau A. Low-cycle fatigue behavior of Inconel 718 at 298K and 823K [J]. Metall. Mater. Trans. A, 1977, 8(7): 1095
|
15 |
Bhattacharyya A, Sastry G V S, Kutumbarao V V. On the dual slope coffin-manson relationship during low cycle fatigue of ni-base alloy In718 [J]. Scr. Mater., 1997, 36(4): 411
|
16 |
Sanders T H, Frishmuth R E, Embley G T. Temperature-dependent deformation mechanisms of alloy 718 in low-cycle fatigue [J]. Metall. Mater. Trans. A, 1981, 12(6): 1003
|
17 |
Xiao L, Chen D L, Chaturvedi M C. Low-cycle fatigue behavior of Inconel 718 superalloy with different concentrations of boron at room temperature [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2005, 36A(10) : 2671
|
18 |
Xiao L, Chen D L, Chaturvedi M C. Effect of boron on the low-cycle fatigue behavior and deformation structure of Inconel 718 at 650oC [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A(11) : 3477
|
19 |
Zhang X C, Li H C, Zeng X, et al. Fatigue behavior and bilinear coffin-manson plots of ni-based GH4169 alloy with different volume fractions of delta phase [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 682: 12
|
20 |
Gao S Y, Wang Y W, Su R, et al. Low-cycle fatigue behavior of GH4169 superalloy [J]. Rare Metal Mat. Eng., 2022, 46(3): 289
|
20 |
高圣勇, 王一雯, 苏 孺 等. GH4169高温合金低周疲劳变形行为研究 [J]. 稀有金属材料与工程, 2022, 46(3): 289
|
21 |
Praveen K V U, Singh V. Effect of heat treatment on coffin-manson relationship in lcf of superalloy IN718 [J]. Mater.Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 485(1-2): 352
|
22 |
Banerjee A, Sahu J K, Paulose N, et al. Micromechanism of cyclic plastic deformation of alloy IN718 at 600oC [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39(7): 877
|
23 |
Krishna E H, Prasad K, Singh V, et al. A comparative evaluation of low cycle fatigue behavior of conventional and modified Inconel 718 [J]. Trans. Indian Inst. Met., 2010, 63(2-3): 515
|
24 |
Mahobia G S, Paulose N, Mannan S L, et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718 [J]. Int. J. Fatigue, 2014, 59: 272
|
25 |
Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 482
|
25 |
郭建亭. 高温合金材料学上册 [M]. 北京: 科学出版社, 2010: 482
|
26 |
Li Y J, Liu R, He J S, et al. Effect of different heat treatment processes on microstructure and mechanical propertiesof K4169 superalloy [J]. J. Aeronaut. Mater., 2021, 41(4): 119
|
26 |
李妍佳, 柳 瑞, 何金珊 等. 热处理工艺对K4169高温合金组织和力学性能的影响 [J]. 航空材料学报, 2021, 41(4): 119
doi: 10.11868/j.issn.1005-5053.2021.000030
|
27 |
Kong W W, Yuan C, Zhang B N, et al. Investigation on low-cycle fatigue behaviors of wrought superalloy GH4742 at room-temperature and 700oC [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2019, 751: 226
|
28 |
Zhang G X, Long A P, Xiao L, et al. Analysis of low cycle fatigue behavior and life prediction model of a new powder superalloy [J]. Rare Metal Mat. Eng., 2021, 50(8): 2789
|
28 |
张高翔, 龙安平, 肖 磊 等. 一种新型粉末高温合金的低周疲劳行为与寿命预测模型分析 [J]. 稀有金属材料与工程, 2021, 50(8): 2789
|
29 |
Zhang S Z, Li L, Hou X Q. Low-cycle fatigue of the second generation directionally solidified superalloy [J]. Journal of Mechanical Strength, 2017, 39(2): 311
|
29 |
张仕朝, 李 莉, 侯学勤. 第二代定向柱晶高温合金低周疲劳行为研究 [J]. 机械强度, 2017, 39(2): 311
|
30 |
Yao J, Guo J T, Yuan C, et al. Low cycle fatigue behavior of cast nickel base superalloy K52 [J]. Acta Metall. Sin., 2005, (4): 357
|
30 |
姚 俊, 郭建亭, 袁 超 等. 铸造镍基高温合金K52的低周疲劳行为 [J]. 金属学报, 2005, (4): 357
|
31 |
Zhong Z H, Gu Y F, Yuan Y, et al. On the low cycle fatigue behavior of a ni-base superalloy containing high Co and Ti contents [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, 552: 434
|
32 |
Kim I S, Choi B G, Jung J E, et al. Effect of microstructural characteristics on the low cycle fatigue behaviors of cast ni-base superalloys [J]. Mater. Charact., 2015, 106: 375
|
33 |
Xie J, Shu D L, Hou G C, et al. Low-cycle fatigue behavior of K416B ni-based superalloy at 650oC [J]. J. Cent. South Univ., 2021, 28(9): 2628
|
34 |
Zhong Q P, Zhao Z H, Zhang Z. Development of "fractography" and research of fracture micromechanism [J]. J. Mech. Strength, 2005, (3): 358
|
34 |
钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究 [J]. 机械强度, 2005, (3): 358
|
35 |
Yu D L, Zhang D F, Dai Q W, et al. Effect of stress ratio on high cycle fatigue properties in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2018, 711: 624
|
36 |
Liu Y H, Wu Y, Kang M D, et al. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2018, 736: 438
|
37 |
Zhang A W, Yang Y, Zhang S, et al. Distribution of phosphorus and its effects on precipitation behaviors and tensile properties of IN718C cast superalloy [J]. Acta Metall. Sin.-Engl. Lett., 2019, 32(7): 887
|
38 |
Hou K L, Wang M, Ou M Q, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new ni-base superalloy during aging at 800oC [J]. J. Mater. Sci. Technol., 2021, 68: 40
|
39 |
Xiao L, Chen D L, Chaturvedi M C. Cyclic deformation mechanisms of precipitation-hardened Inconel 718 superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 483-84: 369
|
40 |
Hou K L, Ou M Q, Wang M, et al. Low cycle fatigue and high cycle fatigue of K4750 Ni-based superalloy at 600oC: analysis of fracture behavior and deformation mechanism [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2021, 820: 141588
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|