Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 621-631    DOI: 10.11901/1005.3093.2023.537
  研究论文 本期目录 | 过刊浏览 |
K4169合金的高温低周疲劳行为
刘庆澳1,2, 张伟红1,2(), 王志远1,2, 孙文儒1,2()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC
LIU Qing'ao1,2, ZHANG Weihong1,2(), WANG Zhiyuan1,2, SUN Wenru1,2()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
Qing'ao LIU, Weihong ZHANG, Zhiyuan WANG, Wenru SUN. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. Chinese Journal of Materials Research, 2024, 38(8): 621-631.

全文: PDF(23834 KB)   HTML
摘要: 

在650℃进行镍基铸造高温合金K4169的低周疲劳实验,使用SEM、TEM等手段表征合金变形前后的微观组织和断裂特征,研究了这种合金的高温低周疲劳行为。结果表明,这种合金的疲劳寿命随着应变的增大逐渐降低,应变为0.5%和0.6%时在循环前2~200周次内出现硬化现象,随后出现循环稳定和循环软化;应变为0.8%和1.0%时,合金出现连续的循环软化;初期的循环硬化与γ″强化相对位错运动的阻碍有关,而循环软化则归因于位错反复剪切γ″相。这种合金的塑性应变幅与疲劳失效反向数的Coffin-Manson方程表现出双线性关系。对微观变形结构的观察表明,这种合金在高应变和低应变下的循环变形模式均为位错剪切γ″相和滑移,且其在不同应变下的疲劳失效均表现为穿晶断裂。这种合金表现出双线性的原因可能是变形均匀性的转变,非Masing特性证明了这种转变。

关键词 金属材料K4169合金低周疲劳断裂行为Coffin-Manson关系变形机制    
Abstract

The low cycle fatigue behavior of nickel based cast superalloy K4169 at 650oC was studied, while its microstructure variation before and after test was assessed by means of SEM and TEM. The results show that the fatigue life of the alloy gradually decreases with the increasing strain. When the strain is 0.5% and 0.6%, the alloy experiences strain hardening within the early 2~200 cycles, followed by cyclic stability and cyclic softening, respectively; When the strain is 0.8% and 1.0%, the alloy exhibits continuous cyclic softening behavior; Initial cyclic hardening is related to the hindering effect of γ″ strengthening phases on the movement of dislocations, while cyclic softening is attributed to dislocations shearing γ″phases repeatedly. The Coffin-Manson equation for the relationship between the plastic strain amplitude and the reverse number of fatigue failure of the alloy exhibits a bilinear relationship. Observation of the microstructure shows that the cyclic deformation mode of the alloy at high and low strains is all dislocations shearing γ″ phase and slip, and the fatigue failure of the alloy under different strains all exhibits transgranular fracture. Therefore, the reason for the bilinear behavior of the alloy may be the transformation of deformation uniformity, and the non-Masing characteristic exhibited by the alloy also demonstrate the transformation of deformation uniformity.

Key wordsmetallic materials    K4169 alloy    low-cycle fatigue    fracture behavior    Coffin-Manson relationship    deformation mechanism
收稿日期: 2023-11-06     
ZTFLH:  TG146.1+5  
通讯作者: 张伟红,副研究员,whzhang@imr.ac.cn,研究方向为变形高温合金组织性能演变机理及其制备技术
孙文儒,研究员,wrsun@imr.ac.cn,研究方向为高温合金及其加工技术
Corresponding author: ZHANG Weihong, Tel: (024)23971325, E-mail: whzhang@imr.ac.cn
SUN Wenru, Tel: (024)23971737, E-mail: wrsun@imr.ac.cn
作者简介: 刘庆澳,男,1999年生,硕士生
图1  低周疲劳试样尺寸示意图
图2  K4169合金热处理态的组织特征
Element (%)CAlTiCrFeNiNbMo
MC18.450.026.020.60.81.9371.760.41
δ-Ni3Nb4.010.511.414.8314.0749.3412.763.07
γ-Ni-0.271.2618.9817.3254.744.852.57
表1  析出相和基体的能谱 (EDS)
图3  循环滞后回线和Masing曲线
图4  合金的循环应力响应曲线
图5  合金在不同应变下的循环硬化参数D
图6  应变幅与疲劳失效反向数的关系
图7  宏观断口的形貌
图8  微观断口的形貌
图9  断口的纵剖面组织
图10  断口纵剖面的二次裂纹和EBSD分析
图11  中断试样(Δεt = 0.5%,Nf = 100 cycs)的微观变形结构
图12  不同应变下断裂试样的微观变形结构
1 El-bagoury N, Matsuba T, Yamamoto K, et al. Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy [J]. Mater. Trans., 2005, 46(11): 2478
2 Liu R, Wang X T, Hu P P, et al. Low cycle fatigue behavior of micro-grain casting K4169 superalloy at room temperature [J]. Prog. Nat. Sci., 2022, 32(6): 693
3 Zhang L K, Wu X D, Zou Y, et al. Effect of Nb content on microstructure and mechanical properties of K4169-type superalloy [J]. J. Mater. Eng. Perform., 2022, 31(5): 4204
4 Wu Y, Liu Y H, Kang M D, et al. Microstructure evolution of K4169 alloy during cyclic loading [J]. Acta Metall. Sin., 2020, 56(9): 1185
doi: 10.11900/0412.1961.2020.00026
4 吴 贇, 刘雅辉, 康茂东 等. K4169合金循环加载过程中的微观组织演变 [J]. 金属学报, 2020, 56(9): 1185
5 Teng Y J, Ou M Q, Xing W W, et al. Effect of nitrogen content on the microstructure and mechanical properties of K4169 alloy [J]. Rare Metal Mat. Eng., 2019, 48(5): 1505
5 滕雨均, 欧美琼, 邢炜伟 等. 氮对K4169合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2019, 48(5): 1505
6 Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, 355(1-2): 114
7 Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 690: 137
8 Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. Int. J. Fatigue, 2009, 31(11-12): 1966
9 Bhaumik S K, Sujata M, Venkataswamy M A. Fatigue failure of aircraft components [J]. Eng. Fail. Anal., 2008, 15(6): 675
10 Lingli S B, Han Y F, Wang J, et al. Effects of heat treatment on microstructure and stress rupture properties of K4169 investment castings after hot isostatically pressed treatment [J]. Special Casting & Nonferrous Alloys, 2016, 36(10): 1013
10 凌李石保, 韩延峰, 王 俊 等. 热处理对热等静压K4169合金组织及高温持久性的影响 [J]. 特种铸造及有色合金, 2016, 36(10): 1013
11 Huang T W, Liu L, Yang A M, et al. Effect of structure refinement by addition of refiner on LCF properties of cast superalloy K4169 [J]. J. Mater. Eng., 2004, (11): 22
11 黄太文, 刘 林, 杨爱民 等. 化学法细化高温合金K4169的低周疲劳性能研究 [J]. 材料工程, 2004, (11): 22
12 Wang K, Wang J, Kang M D, et al. Effect of hot isostatic pressing on microstructures and properties of superalloy K4169 [J]. Chin. J. Nonferr. Mater., 2014, 24(5): 1224
12 王 恺, 王 俊, 康茂东 等. 热等静压对K4169高温合金组织与性能的影响 [J]. 中国有色金属学报, 2014, 24(5): 1224
13 Liu Y H, Kang M D, Wu Y, et al. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments [J]. Int. J. Fatigue, 2018, 108: 79
14 Fouenier D, Pineau A. Low-cycle fatigue behavior of Inconel 718 at 298K and 823K [J]. Metall. Mater. Trans. A, 1977, 8(7): 1095
15 Bhattacharyya A, Sastry G V S, Kutumbarao V V. On the dual slope coffin-manson relationship during low cycle fatigue of ni-base alloy In718 [J]. Scr. Mater., 1997, 36(4): 411
16 Sanders T H, Frishmuth R E, Embley G T. Temperature-dependent deformation mechanisms of alloy 718 in low-cycle fatigue [J]. Metall. Mater. Trans. A, 1981, 12(6): 1003
17 Xiao L, Chen D L, Chaturvedi M C. Low-cycle fatigue behavior of Inconel 718 superalloy with different concentrations of boron at room temperature [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2005, 36A(10) : 2671
18 Xiao L, Chen D L, Chaturvedi M C. Effect of boron on the low-cycle fatigue behavior and deformation structure of Inconel 718 at 650oC [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A(11) : 3477
19 Zhang X C, Li H C, Zeng X, et al. Fatigue behavior and bilinear coffin-manson plots of ni-based GH4169 alloy with different volume fractions of delta phase [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 682: 12
20 Gao S Y, Wang Y W, Su R, et al. Low-cycle fatigue behavior of GH4169 superalloy [J]. Rare Metal Mat. Eng., 2022, 46(3): 289
20 高圣勇, 王一雯, 苏 孺 等. GH4169高温合金低周疲劳变形行为研究 [J]. 稀有金属材料与工程, 2022, 46(3): 289
21 Praveen K V U, Singh V. Effect of heat treatment on coffin-manson relationship in lcf of superalloy IN718 [J]. Mater.Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 485(1-2): 352
22 Banerjee A, Sahu J K, Paulose N, et al. Micromechanism of cyclic plastic deformation of alloy IN718 at 600oC [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39(7): 877
23 Krishna E H, Prasad K, Singh V, et al. A comparative evaluation of low cycle fatigue behavior of conventional and modified Inconel 718 [J]. Trans. Indian Inst. Met., 2010, 63(2-3): 515
24 Mahobia G S, Paulose N, Mannan S L, et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718 [J]. Int. J. Fatigue, 2014, 59: 272
25 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 482
25 郭建亭. 高温合金材料学上册 [M]. 北京: 科学出版社, 2010: 482
26 Li Y J, Liu R, He J S, et al. Effect of different heat treatment processes on microstructure and mechanical propertiesof K4169 superalloy [J]. J. Aeronaut. Mater., 2021, 41(4): 119
26 李妍佳, 柳 瑞, 何金珊 等. 热处理工艺对K4169高温合金组织和力学性能的影响 [J]. 航空材料学报, 2021, 41(4): 119
doi: 10.11868/j.issn.1005-5053.2021.000030
27 Kong W W, Yuan C, Zhang B N, et al. Investigation on low-cycle fatigue behaviors of wrought superalloy GH4742 at room-temperature and 700oC [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2019, 751: 226
28 Zhang G X, Long A P, Xiao L, et al. Analysis of low cycle fatigue behavior and life prediction model of a new powder superalloy [J]. Rare Metal Mat. Eng., 2021, 50(8): 2789
28 张高翔, 龙安平, 肖 磊 等. 一种新型粉末高温合金的低周疲劳行为与寿命预测模型分析 [J]. 稀有金属材料与工程, 2021, 50(8): 2789
29 Zhang S Z, Li L, Hou X Q. Low-cycle fatigue of the second generation directionally solidified superalloy [J]. Journal of Mechanical Strength, 2017, 39(2): 311
29 张仕朝, 李 莉, 侯学勤. 第二代定向柱晶高温合金低周疲劳行为研究 [J]. 机械强度, 2017, 39(2): 311
30 Yao J, Guo J T, Yuan C, et al. Low cycle fatigue behavior of cast nickel base superalloy K52 [J]. Acta Metall. Sin., 2005, (4): 357
30 姚 俊, 郭建亭, 袁 超 等. 铸造镍基高温合金K52的低周疲劳行为 [J]. 金属学报, 2005, (4): 357
31 Zhong Z H, Gu Y F, Yuan Y, et al. On the low cycle fatigue behavior of a ni-base superalloy containing high Co and Ti contents [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, 552: 434
32 Kim I S, Choi B G, Jung J E, et al. Effect of microstructural characteristics on the low cycle fatigue behaviors of cast ni-base superalloys [J]. Mater. Charact., 2015, 106: 375
33 Xie J, Shu D L, Hou G C, et al. Low-cycle fatigue behavior of K416B ni-based superalloy at 650oC [J]. J. Cent. South Univ., 2021, 28(9): 2628
34 Zhong Q P, Zhao Z H, Zhang Z. Development of "fractography" and research of fracture micromechanism [J]. J. Mech. Strength, 2005, (3): 358
34 钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究 [J]. 机械强度, 2005, (3): 358
35 Yu D L, Zhang D F, Dai Q W, et al. Effect of stress ratio on high cycle fatigue properties in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2018, 711: 624
36 Liu Y H, Wu Y, Kang M D, et al. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2018, 736: 438
37 Zhang A W, Yang Y, Zhang S, et al. Distribution of phosphorus and its effects on precipitation behaviors and tensile properties of IN718C cast superalloy [J]. Acta Metall. Sin.-Engl. Lett., 2019, 32(7): 887
38 Hou K L, Wang M, Ou M Q, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new ni-base superalloy during aging at 800oC [J]. J. Mater. Sci. Technol., 2021, 68: 40
39 Xiao L, Chen D L, Chaturvedi M C. Cyclic deformation mechanisms of precipitation-hardened Inconel 718 superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 483-84: 369
40 Hou K L, Ou M Q, Wang M, et al. Low cycle fatigue and high cycle fatigue of K4750 Ni-based superalloy at 600oC: analysis of fracture behavior and deformation mechanism [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2021, 820: 141588
[1] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[2] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[3] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[13] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[14] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.