Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 463-470    DOI: 10.11901/1005.3093.2023.415
  研究论文 本期目录 | 过刊浏览 |
Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响
王俊, 王炫力(), 刘爽, 宋蕊, 宋希文
内蒙古科技大学材料科学与工程学院 包头 014010
Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating
WANG Jun, WANG Xuanli(), LIU Shuang, SONG Rui, SONG Xiwen
School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
Jun WANG, Xuanli WANG, Shuang LIU, Rui SONG, Xiwen SONG. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. Chinese Journal of Materials Research, 2024, 38(6): 463-470.

全文: PDF(11102 KB)   HTML
摘要: 

采用固相合成法制备(Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0,0.02,0.04,0.06,0.08,0.1)陶瓷材料,使用X射线衍射仪及Rietveld精修、X射线光电子能谱仪、扫描电子显微镜、X射线能谱仪、透射电子显微镜和激光导热仪等手段对其表征,研究了Mn掺杂对其微观结构和导热性能的影响。结果表明:(Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料均为单一的YAG相,随着Mn掺杂量的提高晶格常数和晶胞体积先减小后增大,Mn2+逐渐占据晶胞中的Al3+位置但是Y3Al5O12的晶体结构不变;Mn掺杂使(Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的热导率显著降低,y = 0.06的陶瓷材料热导率最低,在1100℃热导率约为1.38 W/(m·K),比纯YAG陶瓷的热导率(2.1 W/(m·K))降低了约34.6%。

关键词 无机非金属材料热障涂层钇铝石榴石双位掺杂微观结构热导率    
Abstract

Ceramic materials (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared by solid phase synthesis method, and their microstructure and thermal conductivity were studied by X-ray diffractometer and Rietveld refinement method, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, transmission electron microscopy, laser thermal conductivity tester. The results show that the ceramic materials of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 are all single YAG phase, with the increase of Mn doping, the lattice constant and cell volume decrease and then increase, Mn2+ gradually occupies the position of Al3+ in the cell, keeping the crystal structure of Y3Al5O12 unchanged; the thermal conductivity of the ceramic material (Y0.4Er0.6)3(Al1 - y Mn y )5O12 is significantly reduced, with the lowest thermal conductivity at Mn doping y = 0.06, which is about 1.38 W/(m·K) at 1100oC, and reduced by about 34.6 % compared to that of the pure ceramic material YAG (2.1 W/(m·K)).

Key wordsinorganic non-metallic materials    thermal barrier coating    yttrium aluminum garnet    double-site doping    microstructure    thermal conductivity
收稿日期: 2023-08-23     
ZTFLH:  TQ174.1  
基金资助:国家自然科学基金(52372062);内蒙古自治区直属高校基本科研业务费项目(2023QNJS016);内蒙古科技大学创新基金项目(2019QDL-B03)
通讯作者: 王炫力,wangxuanli917@163.com,研究方向为高强高韧结构陶瓷材料
Corresponding author: WANG Xuanli, Tel: 15374723217, E-mail: wangxuanli917@163.com
作者简介: 王 俊,男,1998年生,硕士生
图1  (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0, 0.02, 0.04, 0.06, 0.08, 0.1)陶瓷材料的XRD谱及其局部放大图谱
图2  (Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的Rietveld精修
ya = b = c /nmα = β = γ / (o)V / nm3RWP / %Rp / %
01.19917901.724418.476.20
0.021.19923901.724678.786.50
0.041.19913901.724239.256.80
0.061.19951901.725889.276.75
0.081.19984901.727308.266.12
0.11.20116901.7330310.167.59
表1  (Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料经Rietveld精修的晶胞参数和精修数据
LabelElem.Mult.xyzFrac.
Mn1Mn2+160000.211
Al1Al3+160000.789
Mn3Mn2+240.37500.250.171
Al2Al3+240.37500.250.829
Er3Er3+240.12500.250.6
Y1Y3+240.12500.250.4
O1O2-96-0.0335260.0507890.1488871
表2  (Y0.4Er0.6)3(Al0.94Mn0.06)5O12陶瓷材料的Rietveld全谱拟合结构精修参数
图3  (Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的XPS全谱
图4  (Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的Mn2p XPS精细谱
图5  (Y0.4Er0.6)3(Al0.94Mn0.06)5O12陶瓷材料的TEM及HRTEM照片
图6  不同掺杂量(Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的FESEM照片
图7  (Y0.4Er0.6)3(Al0.94Mn0.06)5O12陶瓷材料的EDS能谱
y25oC100oC300oC500oC700oC900oC1100oC
00.810.730.650.600.570.550.54
0.020.730.670.620.560.530.520.53
0.040.710.670.620.570.530.540.50
0.060.650.630.590.550.540.510.46
0.080.660.620.580.590.570.550.54
0.10.600.580.580.520.540.520.50
表3  (Y0.4Er0.6)3(Al1 - y Mn y )5O12陶瓷材料的热扩散系数λ
图8  (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0,0.02,0.04,0.06,0.08,0.1)陶瓷材料的热导率
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
2 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8(6): 22
3 Kumar A, Moledina J, Liu Y, et al. Nano-micro-structured 6%~8% YSZ thermal barrier coatings: a comprehensive review of comparative performance analysis [J]. Coatings, 2021, 11(12): 1474
4 Li R Y, Xie M, Zhang Y H, et al. Physical properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 ceramic materials [J]. Chin. J. Mater. Res., 2022, 36(1): 49
4 李瑞一, 谢 敏, 张永和 等. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能 [J]. 材料研究学报, 2022, 36(1): 49
doi: 10.11901/1005.3093.2021.230
5 Jiang T, Xie M, Wang X L, et al. Effects of Nb5+ doping on thermal properties of Gd2(Zr1 - x Nb x )2O7+ x ceramics [J]. Adv. Appl. Ceram., 2020, 119(4): 212
6 Yan Z M, Levi A, Zhang Y, et al. A numerical evaluation and guideline for thermal barrier coatings on gasoline compression ignition engines [J]. Int. J. Eng. Res., 2023, 24(5): 2206
7 Xie M, An S L, Song X W, et al. Effects of Er3+ doping on structure and thermal properties of (Sm1 - x Er x )2Zr2O7 ceramics for thermal barrier coating [J]. J. Rare Earths, 2022, 40(12): 1920
8 Jiang T, Xie M, Guan L L, et al. Effect of Nb5+ and Cu2+ codoping on thermal properties of Gd2Zr2O7 Ceramic [J]. J. Rare Earths, 2021, 39(2): 180
9 An G S, Li W S, Feng L, et al. Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramic-layer thermal barrier coatings [J]. Ceram. Int., 2021, 47(17): 24320
10 Kumar R, Rommel S, Jiang C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures [J]. Surf. Coat. Technol., 2022, 432: 128039
11 Sun S Y, Xue Z L, He W T, et al. Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J]. Ceram. Int., 2019, 45(7): 8138
12 Li M H, Wang D R, Xue J C, et al. Preparation of Pd-doped Y3Al5O12 thermal barrier coatings using cathode plasma electrolytic deposition [J]. Ceram. Int., 2020, 46(6): 7019
13 Owoseni T A, Rincon Romero A, Pala Z, et al. YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray [J]. Ceram. Int., 2021, 47(17): 23803
14 Wang X L, Xing J X, Xie M, et al. Influence of Er3+ doping on the mechanical and thermophysical properties of (Er x Y1 - x )3Al5O12 ceramics [J]. Process. Appl. Ceram., 2023, 17(1): 23
15 Liu Y G, Peng P, Fang M H, et al. Y3 - x Er x Al5O12 aluminate ceramics: preparation, thermal properties and theoretical model of thermal conductivity [J]. Adv. Eng. Mater., 2012, 14(3): 170
16 Wang J, Xu F, Wheatley R J, et al. Yb3+ doping effects on thermal conductivity and thermal expansion of yttrium aluminium garnet [J]. Ceram. Int., 2016, 42(12): 14228
17 Xie M, Cui Y, Zhang K, et al. Analysis of thermal conductivity behavior of Yb3+ and Er3+ Co-doped Sm2Zr2O7 Ceramics [J]. Aeronaut. Manuf. Technol., 2023, 66(suppl.1) : 61
17 谢 敏, 崔 越, 张 凯 等. Yb3+、Er3+共掺杂Sm2Zr2O7陶瓷导热性能研究 [J]. 航空制造技术, 2023, 66(): 61
18 Shu J, Lu M L, Zhang G F, et al. Preparation and redox performance of nanosized Ce0.92M0.08O2 (M = Co, Mn, Fe, La) solid solutions [J]. J. Mater. Eng., 2023, 51(3): 138
18 束 俊, 陆旻琳, 张国芳 等. 纳米Ce0.92M0.08O2 (M = Co, Mn, Fe, La) 固溶体的制备及其氧化还原性能 [J]. 材料工程, 2023, 51(3): 138
19 Xue Z L, Ma Y, Gong S K, et al. Influence of Yb3+ doping on phase stability and thermophysical properties of (Y1 - x Yb x )3Al5O12 under high temperature [J]. Ceram. Int., 2017, 43(9): 7153
20 Du Z, Zhao Y L, Kuang D H, et al. Preparation and photocatalytic properties of BiFe1 - x Mn x O3 nano-powders [J]. Mater. Rep., 2023, 37(13): 21100037-1
20 杜 泽, 赵尉伶, 匡代洪 等. BiFe1 - x Mn x O3纳米粉末的制备及光催化性能 [J]. 材料导报, 2023, 37(13): 21100037-1
21 Huang H Y, Xiang W D, Zhang Z M, et al. Preparation and luminescence properties of cerium, manganese Co-doping YAG glass ceramics [J]. J. Chin. Soc. Rare Earths, 2012, 30(6): 726
21 黄海宇, 向卫东, 张志敏 等. YAG: Ce, Mn微晶玻璃的制备及光谱性能研究 [J]. 中国稀土学报, 2012, 30(6): 726
[1] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[3] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[4] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[5] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[7] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[8] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[9] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[10] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[11] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[14] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.