Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 471-480    DOI: 10.11901/1005.3093.2023.294
  研究论文 本期目录 | 过刊浏览 |
玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能
吴倩芳1, 何群1, 常兵1, 全宇鑫1, 胡敬文1, 李赛赛1(), 曹迎楠2
1.安徽工业大学材料科学与工程学院 马鞍山 243002
2.中钢洛阳耐火材料研究院 洛阳 471309
Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics
WU Qianfang1, HE Qun1, CHANG Bing1, QUAN Yuxin1, HU Jingwen1, LI Saisai1(), CAO Yingnan2
1.School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
2.Sintosteel Luoyang Refractory Research Institute, Luoyang 471039, China
引用本文:

吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
Qianfang WU, Qun HE, Bing CHANG, Yuxin QUAN, Jingwen HU, Saisai LI, Yingnan CAO. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. Chinese Journal of Materials Research, 2024, 38(6): 471-480.

全文: PDF(25609 KB)   HTML
摘要: 

以玻璃纤维和玻璃颗粒为主要原料、以Isobam-104为分散剂、羧甲基纤维素钠为稳泡剂、十二烷基硫酸钠为发泡剂、氧化钆为中子屏蔽填料,用泡沫凝胶注模法制备玻璃纤维基隔热多孔陶瓷复合材料,研究了热处理温度对其物相组成、微观结构、机械性能和热导率的影响以及氧化钆的含量对其理化性能和中子屏蔽性能的影响。结果表明,热处理温度从700℃提高到800℃,使多孔陶瓷的强度、体积密度和热导率显著提高、气孔率降低,其抗压强度和抗折强度分别从0.75和0.3 MPa提高到10.7和5.1 MPa,热导率从0.075 W/(m·K)提高到0.28 W/(m·K)。热处理温度为750℃的材料其抗折强度、抗压强度、开口气孔率和热导率分别为1.4 MPa、2.1 MPa、79.8%和0.11 W/(m·K)。氧化钆的添加量(质量分数,下同)从0提高到6%,多孔陶瓷复合材料的强度逐渐降低、对中子的屏蔽效率逐渐提高。氧化钆添加量为6.0%的多孔陶瓷其抗折强度仅为0.63 MPa,抗压强度为0.86 MPa,中子屏蔽率为50.8%,热中子屏蔽率高达82.9%,但是不影响多孔陶瓷的热导率。

关键词 无机非金属材料多孔陶瓷玻璃纤维氧化钆屏蔽性能    
Abstract

Fiberglass based porous ceramics were prepared via foam-gelcasting process using 48.75% (mass fraction) fiberglass and 16.25% (mass fraction) glass particles as main raw materials, 0.25% (mass fraction) Isobam-104 as dispersant, 0.1% (mass fraction) sodium carboxymethyl cellulose as foam stabilizer, 0.6% (mass fraction) sodium dodecyl sulfate as foaming agent, and gadolinium oxide as neutron shielding agent. The effects of heat treatment temperature on the phase composition, microstructure, pore structure, linear shrinkage, flexural strength, compressive strength, thermal conductivity of and porosity of the porous ceramics, and the effect of gadolinium oxide content on the physical properties, microstructure, neutron shielding performance and thermal conductivity of the porous ceramic composites were investigated. The results show that the heat treatment temperature had a great influence on the microstructure and mechanical properties of the porous ceramics. As the temperature increased from 700oC to 800oC, the size and the number of pores (open pores and window pores) decreased gradually, the pore walls became thick and dense, the flexural and compressive strength of the porous ceramics increased from 0.3 MPa and 0.75 MPa to 5.1 MPa and 10.7 MPa, respectively, while the thermal conductivity increased from 0.075 W/(m·K) to 0.28 W/(m·K). After being treated at 750oC, the physical properties of porous ceramics were excellent, namely the flexural strength, compressive strength and porosity were 1.4 MPa, 2.1 MPa, 79.8% (mass fraction) respectively and the thermal conductivity was as low as 0.11 W/(m·K). With the increase of gadolinium oxide content from 0 to 6% (mass fraction), the porosity and mechanical properties of porous ceramic composites decrease, but their neutron shielding properties are significantly improved. When added 6.0% (mass fraction) gadolinium oxide, the neutron shielding rate and the thermal neutron shielding rate of the as-prepared porous ceramics were 50.8% and 82.9% (mass fraction) respectively, but the thermal conductivity was still 0.11 W/(m·K). Compared with traditional shielding materials, the glass fiber based insulating porous ceramic composite prepared in this work has excellent mechanical properties, as well as excellent thermal insulation and neutron shielding properties.

Key wordsinorganic non-metallic materials    porous ceramics    fiberglass    gadolinium oxide    shielding properties
收稿日期: 2023-06-15     
ZTFLH:  TB32  
基金资助:安徽省教育厅自然科学基金(KJ2020A0270);先进耐火材料国家重点实验室开放基金(SKLAR202102);教育部冶金减排与资源循环利用重点实验室(安徽工业大学)开放项目(JKF21-04)
通讯作者: 李赛赛,副教授,lisaisai@ahut.edu.cn,研究方向为耐火材料
Corresponding author: LI Saisai, Tel: 13627290264, E-mail: lisaisai@ahut.edu.cn
作者简介: 吴倩芳,女,2000年生,硕士生
图1  玻璃颗粒的粒径分布
SiO2CaOAl2O3MgONa2OFe2O3TiO2SrO
Fiberglass57.621.717.21.30.50.20.80.7
Glass particles67.88.421.41.50.20.10.10.5
表1  玻璃纤维和玻璃颗粒的化学成分
图2  原料玻璃纤维和玻璃颗粒的SEM照片
图3  热处理温度不同的多孔陶瓷的XRD谱
图4  热处理温度不同的多孔陶瓷的SEM照片
图5  热处理温度不同的多孔陶瓷的宏观结构、微观结构和孔径分布
图6  热处理温度不同的多孔陶瓷的线收缩率
图7  热处理温度不同的多孔陶瓷的孔隙率、体积密度、抗折强度及耐压强度
图8  热处理温度不同的多孔陶瓷的热导率
Porosity / %Thermal conductivity at 25oC / W·(m·K)-1ProcessingRef.
75.70.19Foam-gelcasting[19]
78.00.86Pore-forming agent[26]
60.0~83.40.17~0.34Freeze casting[27]
72.7~86.30.09~0.42Direct foaming[28]
61.10~85.230.075~0.28Foam-gelcastingThis work
表2  本文所制备的多孔陶瓷和文献中的多孔陶瓷的热导率
图9  氧化钆含量不同的多孔陶瓷的XRD谱
图10  氧化钆含量不同的复合材料的气孔率、体积密度、抗折和耐压强度
图11  氧化钆含量不同的复合材料的微观结构
图12  氧化钆含量不同的复合材料的孔结构
图13  氧化钆含量不同的复合材料的中子和热中子屏蔽率
图14  氧化钆含量不同的复合材料的热导率
1 Zhang H C, Yin D Z, Chai X M, et al. Thermoelectric conversion performance of combined thermoions system for space nuclear power supply [J]. Front. Energy Res., 2020, 7: 167
2 Abbasova N, Yüksel Z, Abbasov E, et al. Investigation of gamma-ray attenuation parameters of some materials used in dental applications [J]. Results Phys., 2019, 12: 2202
doi: 10.1016/j.rinp.2019.02.068
3 Lu C, Lyu J F, Zhang L M, et al. Nuclear power plants with artificial intelligence in industry 4.0 era: top-level design and current applications—A systemic review [J]. IEEE Access, 2020, 8: 194315
4 Yang X Y. Preparation and performance of gadolinium-enriched ODS-316L steel for thermal neutron shielding [D]. Hefei: University of Science and Technology of China, 2022
4 杨新异. 热中子屏蔽用富钆ODS-316L钢的制备与性能研究 [D]. 合肥: 中国科学技术大学, 2022
5 Saeed A, Murshed M N, AL-Shahari E A. Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats [J]. Environ. Sci. Pollut. Res. Int., 2020, 27(32): 40443
6 Dang L Z. The produce, property research and Monte-Carlo simulation of B4C/Al neutron absorber composites [D]. Nanjing: University of Aeronautics and Astronautics, 2014
6 戴龙泽. B4C/Al中子吸收复合材料的制备、性能测试与蒙特卡罗模拟 [D]. 南京: 南京航空航天大学, 2014
7 Demir İ, Gümüş M, Gökçe H S. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures [J]. Constr. Build. Mater., 2020, 257: 119596
8 Shin J W, Lee J W, Yu S, et al. Polyethylene/boron-containing composites for radiation shielding [J]. Thermochim. Acta, 2014, 585: 5
9 Meng X Y, Xu J, Yang R W, et al. Lanthanum zirconate porous ceramics with controllable secondary pores for high-temperature thermal insulation [J]. Ceram. Int., 2022, 48(22): 33976
10 Sarkar N, Park J G, Mazumder S, et al. Al2TiO5-mullite porous ceramics from particle stabilized wet foam [J]. Ceram. Int., 2015, 41(5): 6306
11 Xia F, Cui S C, Pu X P. Performance study of foam ceramics prepared by direct foaming method using red mud and K-feldspar washed waste [J]. Ceram. Int., 2022, 48(4): 5197
12 Chen R Y, Jia W B, Shan Q, et al. A novel design of Al2O3-ZrO2 reticulated porous ceramics with hierarchical pore structures and excellent properties [J]. J. Eur. Ceram. Soc., 2019, 39(5): 1877
13 Tian L, Li Y M, Ju P, et al. A novel approach to prepare reticulated porous TiN ceramics with high strength and high porosity by in-situ synthesis [J]. J. Eur. Ceram. Soc., 2022, 42(6): 2718
14 Chen R Y, Jin X X, Hei D Q, et al. Enhanced mechanical strength of SiC reticulated porous ceramics via addition of in-situ chopped carbon fibers [J]. J. Alloys Compd., 2021, 888: 161638
15 Ma G S, Xia L, Zhang T, et al. Permeability and thermal expansion properties of porous LAS ceramic prepared by gel-casting method [J]. J. Eur. Ceram. Soc., 2020, 40(9): 3462
16 Yuan L, Tian C, Yan X H, et al. Preparation of porous MgAl2O4 ceramics by a novel pectin gel-casting process [J]. J. Aust. Ceram. Soc., 2021, 57: 1049
17 Dang W, Wang W H, Wu P F, et al. Freeze-cast porous Al2O3 ceramics strengthened by up to 80% ceramics fibers [J]. Ceram. Int., 2022, 48(7): 9835
18 Lang Y, Zhao L, Dai X, et al. Preparation of porous YSZ ceramics by ball milling foaming-freeze drying process [J]. Ceram. Int., 2020, 46(7): 9834
19 Dong J F, Wei J W, Han L, et al. Preparation of porous halloysite nanotube ceramics with high porosity and low thermal conductivity by foam-gelcasting [J]. Ceram. Int., 2022, 48(2): 2441
20 Han L, Deng X G, Li F L, et al. Preparation of high strength porous mullite ceramics via combined foam-gelcasting and microwave heating [J]. Ceram. Int., 2018, 44(12): 14728
21 Zhang Y, Wu Y J, Yang X K, et al. High-strength thermal insulating mullite nanofibrous porous ceramics [J]. J. Eur. Ceram. Soc., 2020, 40(5): 2090
22 König J, Nemanič V, Žumer M, et al. Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass [J]. Constr. Build. Mater., 2019, 214: 337
23 Di X B, Xie Z G, Chen J M, et al. Residual gas analysis in vacuum insulation panel (VIP) with glass fiber core and investigation of getter for VIP [J]. Build. Environ., 2020, 186: 107337
24 Li B W, He M S, Hwang J Y, et al. Characteristics of anorthite-pyroxene ceramics made from hot-poured steelmaking slag [J]. JOM, 2017, 69(2): 173
25 Zhu Y, Guo B, Zuo W R, et al. Effect of sintering temperature on structure and properties of porous ceramics from tungsten ore tailings [J]. Mater. Chem. Phys., 2022, 287: 126315
26 Deng X G, Wang J K, Liu J H, et al. Preparation and characterization of porous mullite ceramics via foam-gelcasting [J]. Ceram. Int., 2015, 41(7): 9009
27 Wang Z, Feng P Z, Wang X H, et al. Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin [J]. Ceram. Int., 2016, 42(10): 12414
28 Gong L L, Wang Y H, Cheng X D, et al. Thermal conductivity of highly porous mullite materials [J]. Int. J. Heat Mass Tran., 2013, 67: 253
29 Zhang Y B. Study on preparation and properties of gadolinium oxide ceramics for neutron absorption materials [D]. Ji′nan: Shandong University, 2017
29 张羽白. 氧化钆中子吸收材料制备及性能研究 [D]. 济南: 山东大学, 2017
30 Jing H, Geng L Y, Qiu S Y, et al. Research progress of rare earth composite shielding materials [J]. J. Rare Earths, 2023, 41(1): 32
31 Huo Z P, Zhao S, Zhong G Q, et al. Surface modified-gadolinium/boron/polyethylene composite with high shielding performance for neutron and gamma-ray [J]. Nucl. Mater. Energy, 2021, 29: 101095
[1] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[2] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[3] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[4] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[5] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[8] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[9] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[10] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[11] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[14] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.