Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 337-346    DOI: 10.11901/1005.3093.2023.323
  研究论文 本期目录 | 过刊浏览 |
lnZ 条件下6013铝合金的热压缩变形行为
伍英明1,2, 姜科达1,3, 刘胜胆1,2,3(), 范世通4, 覃秋慧1,3, 李俊1,3
1.中南大学材料科学与工程学院 长沙 410083
2.中南大学 轻质高强结构材料重点实验室 长沙 410083
3.中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
4.台山市金桥铝型材厂有限公司博士后创新实践基地 台山 529261
Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ
WU Yingming1,2, JIANG Keda1,3, LIU Shengdan1,2,3(), FAN Shitong4, QIN Qiuhui1,3, LI Jun1,3
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China
3.Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
4.Taishan City Kam Kiu Aluminium Extrusion Co., Ltd. Postdoctoral Innovation Base, Taishan 529261, China
引用本文:

伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. 低lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.
Yingming WU, Keda JIANG, Shengdan LIU, Shitong FAN, Qiuhui QIN, Jun LI. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. Chinese Journal of Materials Research, 2024, 38(5): 337-346.

全文: PDF(8791 KB)   HTML
摘要: 

通过6013铝合金的热压缩模拟实验,研究了其在530~575℃、应变速率为0.001~0.1 s-1条件下的热变形行为。基于电子背散射衍射技术分析了这种合金微观组织的演变及其动态软化机制,并用Zener-Hollomon (Z)参数表征变形温度和应变速率的综合影响。结果表明,这种合金的流变应力随着lnZ的增大而增大,在稳态条件下其变形激活能为217.3 kJ/mol。随着lnZ的增大,这种合金的再结晶面积分数和亚晶粒尺寸总体上呈线性降低的趋势。在23.91 ≤ lnZ < 29.55条件下动态再结晶是其主要的软化机制,其中几何动态再结晶占主导;而在29.55 < lnZ ≤ 30.24条件下,动态回复是其主要的软化机制。

关键词 金属材料6013铝合金本构方程组织演变软化机制    
Abstract

The hot deformation behavior of 6013 Al-alloy at 530~575oC and strain rate of 0.001~0.1 s-1 was studied by hot compression simulation test. Based on the electron backscatter diffraction technique, the microstructure evolution and dynamic softening mechanism were discussed, while the so called Zener-Hollomon (Z) parameter was adopted to represent the combined effect of deformation temperature and strain rate. The results show that the flow stress of the alloy increases with the increase of ln Z, and the deformation activation energy of the alloy under steady state condition is 217.3 kJ/mol. With the increase of lnZ, the recrystallization area fraction and sub-grain size tend to decrease linearly. For 23.91 ≤ lnZ < 29.55, dynamic recrystallization is the main softening mechanism, in which geometric dynamic recrystallization is dominant. For 29.55 < lnZ ≤ 30.24, dynamic recovery is the main softening mechanism.

Key wordsmetallic materials    6013 aluminum alloy    constitutive equation    microstructure evolution    softening mechanism
收稿日期: 2023-07-03     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划(2023YFB3710404)
通讯作者: 刘胜胆,教授,lsd_csu@csu.edu.cn,研究方向为高性能铝合金制备连接及组织与性能调控
Corresponding author: LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn
作者简介: 伍英明,男,1998年生,硕士生
MgSiCuMnFeZnCrTiAl
0.850.620.600.200.050.100.060.05Bal.
表1  6013铝合金的化学成分(质量分数,%)
图1  6013铝合金均质态铸锭的金相照片
图2  不同应变速率下的真应力-应变曲线
图3  不同变形条件下6013铝合金的稳态应力、应变速率与变形温度的关系
Strain
rate / s-1
lnZ of different temperature
530oC545oC560oC575oC
0.00125.6425.0424.4723.91
0.0127.9427.3426.7726.21
0.130.2429.6529.0728.52
表2  真应变为1.0时不同热变形条件下的lnZ
图4  在不同温度、应变速率为0.1 s-1条件下的IPF图和取向差分布
Strain rate / s-1Average equivalent circle size of grains at different temperature /μm
530oC545oC560oC575oC
0.001103.7 ± 33.5111.3 ± 39.2114.0 ± 42.6124.5 ± 47.8
0.0188.7 ± 39.779.4 ± 28.199.2 ± 32.4104.9 ± 37.2
0.170.0 ± 33.973.8 ± 26.480.3 ± 24.584.0 ± 36.4
表3  在不同热变形条件下晶粒的平均等效圆尺寸
图5  应变速率不同变形温度为560℃条件下的IPF图和取向差分布
图6  不同lnZ条件下的再结晶面积分数和亚晶粒尺寸
图7  不同lnZ值条件下的晶界图和对应的GND图
图8  两种几何动态再结晶机制的示意图
图9  两种连续动态再结晶机制的示意图
图10  两种不连续动态再结晶机制的示意图
1 Zhang Y, Jiang J, Wang Y, et al. Hot deformation behavior and microstructure evolution of hot-extruded 6A02 aluminum alloy[J]. Mater. Charact., 2022, 188: 111908
2 Ye T, Wu Y Z, Liu A M, et al. Deformation behavior and microscopic mechanism of extruded 6013-T4 aluminum alloy under dynamic impact load[J]. Chin. J. Mater. Res., 2019, 33(2): 109
2 叶 拓, 吴远志, 刘安民 等. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109
3 Yi H, Ding J, Ni C, et al. Hot compression deformation behavior and processing maps of Al-0.5Mg-0.4Si-0.1Cu alloy[J]. J. Mater. Res. Technol., 2022, 19: 4890
4 Li J, Wu X, Liao B, et al. Simulation of dynamic recrystallization in an Al-Mg-Si alloy during inhomogeneous hot deformation[J]. Mater. Today Commun., 2021, 29: 102810
5 Kumar N, Owolabi G M, Jayaganthan R, et al. Hot compression response of solution treated Al-Mg-Si alloy[J]. J. Mater. Eng. Perform., 2019, 28(12): 7602
doi: 10.1007/s11665-019-04459-4
6 Kai X, Chen C, Sun X, et al. Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Mater. Des., 2016, 90: 1151
7 Yang Q Y, Yang D, Zhang Z Q, et al. Flow behavior and microstructure evolution of AA6A82 aluminium alloy with high copper during hot compression deformation at elevated temperature[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(03): 649
8 Khamei A A, Dehghani K. Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy[J]. Mater. Sci. Eng. A, 2015, 627: 1
9 Fan X H, Li M, Li D Y, et al. Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation[J]. Mater. Sci. Technol., 2014, 30(11): 1263
10 Tang X. Study on dynamic compression deformation behavior of 6013 aluminum alloy[D]. Changsha: Hunan University, 2018
10 唐 徐. 6013铝合金动态压缩变形行为研究[D]. 长沙: 湖南大学, 2018
11 Li J, Wu X, Cao L, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Mater. Charact., 2021, 173: 110976
12 Xiao G, Li L X, Ye T. Flow stress curve correction and constitutive equation of 6013 aluminum alloy plane hot compression[J]. Chin. J. Nonferrous. Met., 2014, 24(05): 1268
12 肖 罡, 李落星, 叶 拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24(05): 1268
13 Xiao G, Li L X, Ye T. Optimization of hot deformation constitutive model of 6013 aluminum alloy based on material parameter correction[J]. Chin. J. Nonferrous. Met., 2014, 24(06): 1393
13 肖 罡, 李落星, 叶 拓. 基于材料参数修正的6013铝合金热变形本构模型优化[J]. 中国有色金属学报, 2014, 24(06): 1393
14 Liu S, Pan Q, Li H, et al. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy[J]. J. Mater. Sci., 2019, 54(5): 4366
15 Li H, Yuan X, Zheng W, et al. Flow stress equation for hot compression deformation of Al-Mg-Si alloy[J]. J. Shenyang Univ. Technol., 2012, 34(6): 650
16 Li W Y, Yang F L, Ma Z, et al. Hot deformation and mechanical properties of novel Al-Mg-Si-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1501
17 Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer[J]. Met. Mater. Int., 2016, 22(1): 58
18 Wei T, Wang Y, Tang Z, et al. The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy[J]. Mater. Today Commun., 2021, 27: 102471
19 Yu Y, Pan Q, Wang W, et al. Dynamic softening mechanisms and Zener-Hollomon parameter of Al-Mg-Si-Ce-B alloy during hot deformation[J]. J. Mater. Res. Technol., 2021, 15: 6395
20 Xiao G, Yang Q, Li L. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(04): 1096
21 Xue J P, Huang D N, Zuo Z Z, et al. Effect of extrusion temperature on microstructure and mechanical properties of welded zone of 6005A aluminum alloy[J]. Chin. J. Nonferrous. Met., 2018, 28(07): 1291
21 薛江平, 黄东男, 左壮壮 等. 挤压温度对6005A铝合金焊合区域显微组织和力学性能的影响[J]. 中国有色金属学报, 2018, 28(07): 1291
22 Luo R, Cao Y, Bian H, et al. Hot workability and dynamic recrystallization behavior of a spray formed 7055 aluminum alloy[J]. Mater. Charact., 2021, 178: 111203
23 Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14(9): 1136
24 Chamanfar A, Alamoudi M T, Nanninga N E, et al. Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)[J]. Mater. Sci. Eng. A, 2019, 743: 684
25 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111: 548
26 Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization[J]. Mater. Sci. Eng. A, 2005, 410-411: 152
27 Yu S, Chen L L, Luo R, et al. Dynamic recrystallization and microstructure evolution mechanism of superalloy GH4169[J]. Chin. J. Mater. Res., 2023, 37(03): 211
27 于 森, 陈乐利, 罗 锐 等. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(03): 211
28 Zhang J, Yi Y, Huang S, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Mater. Sci. Eng. A, 2021, 804: 140650
[1] 李若浩, 胡霄雨, 王中成, 李浩, 杨勇, 徐乐, 梁恩溥, 何肖飞. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理[J]. 材料研究学报, 2024, 38(5): 390-400.
[2] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[3] 刘加晓, 胡晓, 丁桦. 时效处理对Fe-12Mn-8Al-1C-3Cu轻质钢的组织演变和力学性能的影响[J]. 材料研究学报, 2024, 38(5): 356-364.
[4] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.