材料研究学报, 2024, 38(5): 337-346 DOI: 10.11901/1005.3093.2023.323

研究论文

lnZ 条件下6013铝合金的热压缩变形行为

伍英明1,2, 姜科达1,3, 刘胜胆,1,2,3, 范世通4, 覃秋慧1,3, 李俊1,3

1.中南大学材料科学与工程学院 长沙 410083

2.中南大学 轻质高强结构材料重点实验室 长沙 410083

3.中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083

4.台山市金桥铝型材厂有限公司博士后创新实践基地 台山 529261

Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ

WU Yingming1,2, JIANG Keda1,3, LIU Shengdan,1,2,3, FAN Shitong4, QIN Qiuhui1,3, LI Jun1,3

1.School of Materials Science and Engineering, Central South University, Changsha 410083, China

2.National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China

3.Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China

4.Taishan City Kam Kiu Aluminium Extrusion Co., Ltd. Postdoctoral Innovation Base, Taishan 529261, China

通讯作者: 刘胜胆,教授,lsd_csu@csu.edu.cn,研究方向为高性能铝合金制备连接及组织与性能调控

责任编辑: 黄青

收稿日期: 2023-07-03   修回日期: 2023-12-25  

基金资助: 国家重点研发计划(2023YFB3710404)

Corresponding authors: LIU Shengdan, Tel:(0731)88830265, E-mail:lsd_csu@csu.edu.cn

Received: 2023-07-03   Revised: 2023-12-25  

Fund supported: National Key Research and Development Program of China(2023YFB3710404)

作者简介 About authors

伍英明,男,1998年生,硕士生

摘要

通过6013铝合金的热压缩模拟实验,研究了其在530~575℃、应变速率为0.001~0.1 s-1条件下的热变形行为。基于电子背散射衍射技术分析了这种合金微观组织的演变及其动态软化机制,并用Zener-Hollomon (Z)参数表征变形温度和应变速率的综合影响。结果表明,这种合金的流变应力随着lnZ的增大而增大,在稳态条件下其变形激活能为217.3 kJ/mol。随着lnZ的增大,这种合金的再结晶面积分数和亚晶粒尺寸总体上呈线性降低的趋势。在23.91 ≤ lnZ < 29.55条件下动态再结晶是其主要的软化机制,其中几何动态再结晶占主导;而在29.55 < lnZ ≤ 30.24条件下,动态回复是其主要的软化机制。

关键词: 金属材料; 6013铝合金; 本构方程; 组织演变; 软化机制

Abstract

The hot deformation behavior of 6013 Al-alloy at 530~575oC and strain rate of 0.001~0.1 s-1 was studied by hot compression simulation test. Based on the electron backscatter diffraction technique, the microstructure evolution and dynamic softening mechanism were discussed, while the so called Zener-Hollomon (Z) parameter was adopted to represent the combined effect of deformation temperature and strain rate. The results show that the flow stress of the alloy increases with the increase of ln Z, and the deformation activation energy of the alloy under steady state condition is 217.3 kJ/mol. With the increase of lnZ, the recrystallization area fraction and sub-grain size tend to decrease linearly. For 23.91 ≤ lnZ < 29.55, dynamic recrystallization is the main softening mechanism, in which geometric dynamic recrystallization is dominant. For 29.55 < lnZ ≤ 30.24, dynamic recovery is the main softening mechanism.

Keywords: metallic materials; 6013 aluminum alloy; constitutive equation; microstructure evolution; softening mechanism

PDF (8791KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346 DOI:10.11901/1005.3093.2023.323

WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. Chinese Journal of Materials Research, 2024, 38(5): 337-346 DOI:10.11901/1005.3093.2023.323

6XXX系(Al-Mg-Si)铝合金是一种可热处理强化合金,具有中等强度和良好的耐腐蚀性,是制造汽车和轨道交通工具的结构材料[1,2]。热轧或挤压是制备6XXX系铝合金材料的关键工序,决定其最终的组织和性能[3]。在高温变形过程中,这种合金的组织发生复杂的变化[4]。Kumar等[5]发现,6082铝合金的软化机制受热变形温度的影响。变形温度为250℃、应变速率为0.001 s-1时,这种合金的主要软化机制为动态回复(Dynamic recovery,DRV),而当变形温度提高到300、350℃时其主要软化机制从DRV转变为动态再结晶(Dynamic recrystallization,DRX)。Kai等[6]研究6X82铝合金在300~500℃、0.01~10 s-1条件下的热变形行为时发现,流变应力随着变形温度的提高或应变速率的降低而减小,高变形温度和低应变速率都有利于合金发生DRX。变形温度和应变速率对金属变形行为的影响,可以用Zener-Hollomon (Z) 参数表征。Yang等[7]研究6A82铝合金热压缩时流变应力的变化和微观组织演变时发现,随着lnZ的降低再结晶晶粒尺寸逐渐增大,DRX分数呈现先减小后增大的趋势。这表明,合金成分和热变形条件对软化机制和微观组织有重要的影响。深入研究并认识6XXX系铝合金高温变形过程中的动态软化行为和特点,对调控其微观组织和性能有重要的意义[8,9]

6013铝合金是在6061的基础上研发的,其中Cu和Si元素的含量更高。6013铝合金T6态的抗拉强度比6061高15%~20%,但是挤压成形性能有所降低[10]。Li等[11]研究了6013铝合金在lnZ = 32~49条件下变形时的软化机制,发现随着lnZ的增大主要软化机制由几何动态再结晶变为DRV。肖罡等[12,13]研究6013铝合金在lnZ = 48~75条件下变形的流变行为时发现,在此变形条件下其软化机制以DRV为主,在峰值应力状态下计算出的变形激活能为364.48 kJ/mol。以往的文献中热变形温度大多低于500℃[12,14~20],而实际的热变形温度更高,挤压温度甚至达到580℃[21]。由于lnZ值与变形温度成反比、与应变速率成正比,本文进行6013铝合金的热模拟实验,研究其在更高温度(高于530℃)即更低lnZ (23~31)条件下的热压缩变形行为和微观组织特点,建立稳态条件下的本构方程、总结再结晶面积分数、亚晶粒尺寸与lnZ之间的关系,并探讨其动态软化机制。

1 实验方法

实验用材料为6013铝合金均质态铸锭,其化学成分列于表1图1给出了该合金的金相组织照片,可见其晶粒形貌呈等轴状,平均尺寸约为135 μm。

表1   6013铝合金的化学成分(质量分数,%)

Table 1  Chemical compositions of 6013 aluminum alloy (mass fraction, %)

MgSiCuMnFeZnCrTiAl
0.850.620.600.200.050.100.060.05Bal.

新窗口打开| 下载CSV


图1

图1   6013铝合金均质态铸锭的金相照片

Fig.1   OM image of homogenized 6013 aluminum alloy ingot


用线切割切取直径为6 mm、高为9 mm的热压缩试样。热压缩模拟实验在Gleeble-3500模拟机上进行,在试样与夹头接触的两端插入石墨片以减少摩擦和不均匀变形。变形温度分别为530、545、560和575℃,应变速率分别为0.001、0.01和0.1 s-1。压缩前将试样以5℃/s的升温速率加热至设定温度,保温180 s以使试样的温度均匀,然后开始压缩。所有试样压缩至真应变为1.0时立即进行室温水淬,以保留其高温变形组织。

将完成热压缩的样品沿着平行于压缩方向切开,将截面机械抛光后用体积分数为10%HClO4 + 90%C2H5OH溶液对进行电解抛光,然后对中心区域进行电子背散射衍射分析(Electron back scattered diffraction,EBSD)。使用Channel 5软件系统分析EBSD数据得到IPF图、再结晶面积分数和晶界图,使用AZtecCrystal软件分析数据得到几何必须位错 (Geometrically necessary dislocation,GND)密度图。

2 结果和讨论

2.1 真应力-应变曲线

图2给出了不同变形温度和应变速率条件下的真应力-应变曲线。从图2可见,合金的流变应力随着变形温度的降低或应变速率的提高而增大。图2a表明,应变速率为0.001 s-1时,随着变形温度从530℃提高到575℃峰值应力从7.61 MPa降低到5.36 MPa。变形温度为530℃时,随着应变速率从0.001 s-1提高到0.1 s-1峰值应力从7.61 MPa增大到19.70 MPa (图2a~c)。三种应变速率的真应力-应变曲线形状相似,流变应力的变化趋势可大致分为三个阶段。在第Ⅰ阶段,随着应变的增大流变应力很快随之增大,压缩变形使位错极快增殖,基体的位错密度迅速提高[4],流变应力也呈现极快增大的趋势,在此阶段加工硬化占主导地位;随着变形进一步增大流变应力的增大缓慢,进入第Ⅱ阶段。在第Ⅱ阶段,应力缓慢增大到峰值后开始减小,因为变形储能的积累发生动态回复和动态再结晶而使其软化[22];动态软化超过加工硬化时,流变应力减小。在变形的后期进入稳态阶段,即第Ⅲ阶段,流变应力不再随着应变的变化而剧烈变化,曲线趋于稳定。这与动态再结晶或动态回复引起的软化与材料加工硬化之间的动态平衡有关[18]

图2

图2   不同应变速率下的真应力-应变曲线

Fig.2   True stress-strain curves at different strain rates (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1


2.2 本构方程

Sellars和Tegart提出的双曲正弦Arrhenius函数,是Al-Mg-Si-Cu合金本构研究中最常用的模型[23]。此模型考虑了流变应力、变形温度和应变速率的影响,能很好地预测流变应力[7,12,15,18]。Arrhenius方程使用幂函数方程

ε˙=A1σn1exp-QRT            ασ<0.8

描述低应力水平的热变形流变应力行为;使用指数公式

ε˙=A2expβσexp-QRT       ασ>1.2

描述高应力水平的流变应力行为;使用双曲正弦函数

ε˙=Asinhασnexp -QRT

描述所有应力水平下的流变应力行为。式中ε˙为应变速率;Q为热变形过程中的变形激活能(J/mol);R为气体常数值(8.314 J/(mol·K));T为实际变形温度(K);σ为流变应力(MPa);AA1A2αβnn1均为材料常数,其中α = β/ n1

假设热变形激活能Q与变形温度T无关,当变形温度T一定时对式(1~ 3)的两边分别取对数,得到

lnε˙=n1lnσ+lnA1-QRT
lnε˙=βσ+lnA2-QRT
lnε˙=nlnsinhασ+lnA-QRT

在一定的变形温度和应变速率条件下对 式(6)整理后得到

lnsinhασ=QnR·1T+lnε˙-lnAn

图3给出了不同变形条件下的lnε˙-lnσ、lnε˙-σ、lnε˙-ln[sin(ασ)]和ln[sin(ασ)]-1000/T关系曲线。线性拟合后得到的斜率n1βnQ/nR分别为4.993、0.517、3.742、6983.9,因此α = β/n1 = 0.1035 MPa-1Q = 217.3 kJ/mol。从图3d还可以发现,三条拟合直线的截距即为(lnε˙-lnA)/n,代入相应的应变速率及n值则得lnA的平均值约为26.5584。

图3

图3   不同变形条件下6013铝合金的稳态应力、应变速率与变形温度的关系

Fig.3   Relationship between steady-state stress, strain rate and deformation temperature of 6013 aluminum alloy under different deformation conditions (a) lnε˙-lnσ, (b) lnε˙-σ, (c) lnε˙-ln[sin(ασ)], (d) ln[sin(ασ)]-1000/T


变形激活能Q值表征原子跃迁克服的能垒,反映金属塑性变形的难易[7]。本文计算出的变形激活能低于文献[12]的结果,因为本文实验中的变形温度更高,原子需要克服的能垒较低,使材料容易发生塑性变形,因此变形激活能Q值更低。温度补偿的应变速率因子

Z=ε˙expQRT

表示变形温度和应变速率的综合影响。

式(8)两边取对数,可得

lnZ=lnε˙+QRT

Q值和各变形参数代入可得各变形条件下的lnZ (表2)。由表2可见,lnZ随着应变速率的提高或变形温度的降低而增大。例如,变形温度为530℃时,随着应变速率从0.001 s-1增大至0.1 s-1,lnZ值从25.64增大至30.24;应变速率为0.001 s-1时,随着变形温度从530℃增大至575℃时lnZ值从25.64减小至23.91。

表2   真应变为1.0时不同热变形条件下的lnZ

Table 2  lnZ under different thermal deformation conditions at true strain 1.0

Strain
rate / s-1
lnZ of different temperature
530oC545oC560oC575oC
0.00125.6425.0424.4723.91
0.0127.9427.3426.7726.21
0.130.2429.6529.0728.52

新窗口打开| 下载CSV


将计算出的材料常数αnQA值代入 式(3),可得稳态条件下6013铝合金的热变形本构方程

ε˙=3.4211×1011sinh0.1035σ3.742exp-2172798.314T

2.3 晶粒组织

为了研究不同变形温度和应变速率对组织演变的影响,选取应变速率为0.1 s-1在不同变形温度下的IPF图和取向差分布图并对其分析,结果在图4中给出。图中的白线表示2°~15°的小角度晶界,黑线表示大于15°的大角度晶界。

图4

图4   在不同温度、应变速率为0.1 s-1条件下的IPF图和取向差分布

Fig.4   IPF images and misorientation distribution at different temperatures and strain rates of 0.1 s-1 (a, a1) 530oC, (b, b1) 545oC, (c, c1) 560oC, (d, d1) 575oC


图4a可见,变形温度为530℃时部分晶粒被明显压扁,内部有大量的亚晶界,其余一些晶粒呈等轴状;在局部区域还出现了细小的再结晶晶粒,如图中黑色框所示,其尺寸为20~30 μm。随着变形温度的提高(图4b~d),扁平状晶粒的数量明显减少,等轴状晶粒的数量增加,并且在高于560℃时尺寸明显增大。

不同变形条件下晶粒的平均等效圆尺寸的统计结果,列于表3。应变速率为0.1 s-1时,随着变形温度从530℃提高到575℃晶粒的平均等效圆尺寸从70.0 μm增大到84.0 μm(增大率为20.0 %),大角度晶界的比例从42.5%提高到48.9%(图4a1~d1),提高了15.1%。这表明,提高变形温度可促进再结晶和晶粒的长大,提高大角度晶界的比例。

表3   在不同热变形条件下晶粒的平均等效圆尺寸

Table 3  Average equivalent circle size of grains under different thermal deformation conditions

Strain rate / s-1Average equivalent circle size of grains at different temperature /μm
530oC545oC560oC575oC
0.001103.7 ± 33.5111.3 ± 39.2114.0 ± 42.6124.5 ± 47.8
0.0188.7 ± 39.779.4 ± 28.199.2 ± 32.4104.9 ± 37.2
0.170.0 ± 33.973.8 ± 26.480.3 ± 24.584.0 ± 36.4

新窗口打开| 下载CSV


图5给出了应变速率不同,变形温度为560℃时的IPF图和取向差分布图。图54(c,c1)表3表明,变形温度为560℃、应变速率为0.001 s-1时晶粒最大,晶粒的平均等效圆尺寸为114.0 μm,随着应变速率的提高尺寸减小。应变速率为0.1 s-1时晶粒的平均等效圆尺寸最小,约为80.3 μm,减小率为29.6%。随着应变速率从0.001 s-1提高到0.1 s-1大角度晶界的比例从67.6%降低到47.2%,减小率为30.2%,这表明,提高应变速率可减小晶粒的平均尺寸,增加亚晶界的数量。

图5

图5   应变速率不同变形温度为560℃条件下的IPF图和取向差分布

Fig.5   IPF images and misorientation distribution at different strain rates and deformation temperature of 560oC (a, a1) 0.001 s-1, (b, b1) 0.01 s-1


使用Channel 5软件分析EBSD数据,得到不同lnZ的再结晶面积分数(图6a)。可以看出,lnZ为23.91时的再结晶面积分数最高,约为84.2%。lnZ为30.24时的再结晶面积分数最低,约为41.8%。随着lnZ从23.91增大到30.24,再结晶面积分数逐渐减小。对图6a中的数据进行线性拟合,得到再结晶面积分数(XDRX)与lnZ的关系

XDRX=-5.74lnZ+219.62

图6

图6   不同lnZ条件下的再结晶面积分数和亚晶粒尺寸

Fig.6   Recrystallization area fraction and sub-grain size under different lnZ (a) recrystallization area fraction, (b) sub-grain size


其相关系数R为0.94198,表明两者之间具有良好的线性关系。这个结果,与Li等[11]对一种Al-Mg-Si合金的研究结果不同。文献[11]的结果是,随着lnZ从32增加到49其再结晶面积分数呈抛物线降低的趋势。

根据 式(11),lnZ为29.55时再结晶面积分数约为50%,23.91 ≤ lnZ < 29.55时XDRX大于50%,当29.55 < lnZ ≤ 30.24时XDRX小于50%。这表明,lnZ小于29.55时DRX是主要的软化机制,大于29.55时则DRV是主要的软化机制。

使用Image J软件测量了不同ln Z条件下的亚晶粒尺寸,结果在图6b中给出。可以看出,随着lnZ从23.91增大到30.24亚晶粒呈不断减小的趋势,从52 μm降至20 μm。Chamanfar[24]研究了6099铝合金在350~500℃、0.01~1 s-1热变形条件下的亚晶粒尺寸,发现随着lnZ从21增大到31亚晶粒尺寸从20 μm线性减小到约5 μm。将不同的lnZ对应的亚晶粒尺寸的数据点进行线性拟合,得到亚晶粒的尺寸(D)与lnZ的关系

D=-4.50lnZ+155.88

线性相关系数R为0.94865,表明两者之间有良好的线性关系。

2.4 再结晶机制

根据晶粒组织特征,再结晶机制包括连续动态再结晶(Continuous dynamic recrystallization,CDRX)、不连续动态再结晶(Discontinuous dynamic recrystallization,DDRX)和几何动态再结晶(Geometric dynamic recrystallization,GDRX)。作为例子,选取四个典型lnZ对应的晶界图和GND图分析再结晶机制,如图7所示。

图7

图7   不同lnZ值条件下的晶界图和对应的GND图

Fig.7   Grain boundary diagram and the corresponding GND diagram under different lnZ value (a, e) 24.47, (b, f, i) 26.77, (c, g, j) 28.52, (d, h, k) 30.24


图7ae给出了lnZ = 24.47条件下的晶界图和GND图。图中有许多“砖块状”的晶粒,如图7a红色虚线框1、2所示,这些晶粒的上、下大角度晶界几乎相互平行,晶粒内的小角度晶界与之垂直。这个结果,与文献[11,25,26]报道的GDRX晶粒形貌特征一致,据此可以确定发生了GDRX。从图7b可见,变形条件lnZ = 26.77时也有GDRX晶粒,如图中的红色虚线框3、4所示。对比可以发现有两种不同的GDRX机制,不同之处在于晶界的取向差分布特征,如图8所示。图8a中GDRX晶粒的晶界取向差均大于35°,由于这两个晶界的取向差很大,不可能是小角度晶界吸收周围位错而形成的,它们是原始晶界;随着变形的继续这两个原始大角度晶界会逐渐靠近,并与其内部的亚晶界相互垂直,当达到亚晶粒直径的1~2倍时原始晶界将接触并发生“掐断”,从而生成新的GRDX晶粒,对应图7ab中2、4红色虚线框中的晶粒特征。图8b代表另一种GDRX机制,相互平行晶界一侧的取向差大于35°,而另外一侧的取向差小于35°。这表明,这类晶界原本是亚晶界,在热变形过程中吸收周围的位错发生旋转合并从而转变为大角度晶界;随着变形的继续进行,两个大角度晶界之间的间距减小到亚晶粒临界尺寸时就发生碰撞生成新的GDRX晶粒,对应图7ab中1、3红色虚线框中的晶粒特征。

图8

图8   两种几何动态再结晶机制的示意图

Fig.8   Schematic of two geometric dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2


图7中还能观察到许多连续动态再结晶晶粒,如图7a~d中的黑色箭头所示。分析大角度和小角度晶界的特征可以发现,在两种CDRX机制之间有一个中间阶段,如图7b中的黑色虚线圆框所示,图7i图7b的放大GND图。图7i中的A区和B区代表两种不同的CDRX机制。在A区中,位错通过DRV形成亚结构而与原始晶界相互连接,如图中白线所示,变形继续时亚晶界消耗周围的位错而使附近的取向差逐渐增大,使小角度晶界转变为大角度晶界,演变过程如图9a所示。在图7i中的B区可见另一种CDRX机制的中间阶段,演变过程如图9b所示。这种亚晶粒的边界由小角度晶界和原始晶界组成,因原始晶界附近的位错密度较低晶界不会向外凸起[11]。试样进一步变形时,小角度晶界经过亚晶粒旋转并消耗周围位错转变为大角度晶界,生成的新CDRX晶粒如图7c中的黑色箭头所指。

图9

图9   两种连续动态再结晶机制的示意图

Fig.9   Schematic of two continuous dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2


图7a~d中的红色箭头所指的,是不连续动态再结晶晶粒。观察相应的GND图可以发现,这些晶粒附近的位错密度比其他区域高得多,如图7j中的C区和图7k中的D区所示。在热压缩变形过程中,应变诱导晶界向外“凸起”,形貌呈“项链”状,主要在三叉晶界夹角或原始晶界处形成[25,27],分别如图10ab所示。如果试样继续热压缩变形,则其附近的位错密度进一步提高,周围的取向差激增使小角度晶界直接转变为大角度晶界,生成一个无应变的DDRX晶核,对应图7d中的红色箭头所指。这与CDRX机制的形核方式不同。CDRX机制经历小角度晶界吸收位错逐渐转变为大角度晶界的过程,即在CDRX机制的中间阶段有10°~15°[11,28]

图10

图10   两种不连续动态再结晶机制的示意图

Fig.10   Schematic of two discontinuous dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2


除了上述的再结晶机制,从图7还可见:lnZ为30.24时可观察到许多亚晶界(2°~15°),表明在此条件下软化机制以DRV为主。综上所述,29.55 <lnZ ≤ 30.24时以DRV为主,还有CDRX和DDRX软化机制;23.91 ≤ lnZ < 29.55时DRX是主要的软化机制,还有CDRX和DDRX机制。

3 结论

(1) 6013铝合金热压缩时的流变应力随着lnZ的增大而增大,稳态条件下的变形激活能为217.3 kJ/mol,Arrhenius本构方程为

ε˙=3.4211×1011sinh0.1035σ3.742exp-2172798.314T

(2) 在热变形过程中,在23.91 ≤ lnZ < 29.55条件下DRX是主要的软化机制,其中GDRX占主导,同时存在CDRX和DDRX;在29.55 < lnZ ≤ 30.24条件下DRV是主要的软化机制,同时出现CDRX和DDRX。

(3) 热压缩后再结晶的面积分数和亚晶粒的尺寸均随着lnZ的增大而呈现线性减小的趋势,提高变形温度或降低应变速率都能促进亚晶粒长大。

参考文献

Zhang Y, Jiang J, Wang Y, et al.

Hot deformation behavior and microstructure evolution of hot-extruded 6A02 aluminum alloy

[J]. Mater. Charact., 2022, 188: 111908

[本文引用: 1]

Ye T, Wu Y Z, Liu A M, et al.

Deformation behavior and microscopic mechanism of extruded 6013-T4 aluminum alloy under dynamic impact load

[J]. Chin. J. Mater. Res., 2019, 33(2): 109

[本文引用: 1]

叶 拓, 吴远志, 刘安民 .

挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理

[J]. 材料研究学报, 2019, 33(2): 109

[本文引用: 1]

Yi H, Ding J, Ni C, et al.

Hot compression deformation behavior and processing maps of Al-0.5Mg-0.4Si-0.1Cu alloy

[J]. J. Mater. Res. Technol., 2022, 19: 4890

[本文引用: 1]

Li J, Wu X, Liao B, et al.

Simulation of dynamic recrystallization in an Al-Mg-Si alloy during inhomogeneous hot deformation

[J]. Mater. Today Commun., 2021, 29: 102810

[本文引用: 2]

Kumar N, Owolabi G M, Jayaganthan R, et al.

Hot compression response of solution treated Al-Mg-Si alloy

[J]. J. Mater. Eng. Perform., 2019, 28(12): 7602

DOI      [本文引用: 1]

The main objective of the present study was to investigate the effect of Mg/Si precipitates on the hot-compression response of Al-Mg-Si alloy and further inspect the influence of compression temperatures and Mg/Si precipitates on microstructural changes. The processing maps were drawn using the dynamic materials model approach. To validate the processing maps, metallurgical factors of different regions of processing map were investigated using differential scanning calorimetry (DSC) and electron back-scattered diffraction. The influence of strain rate on the flow stresses of Al-Mg-Si alloy is not consistent with the traditional results after compression from 100 to 250 degrees C, due to the strain ageing produced by the Mg/Si precipitates. The DSC study reveals that no Mg/Si precipitate evolved during the compression test after compressing beyond 250 degrees C. The processing maps (drawn at 0.1 true strain to 0.6 true strain) and metallurgical factors (high-angle grain boundaries or dynamic recrystallized grains) indicated that hot-compression efficiency of Al-Mg-Si alloy is significantly improved after compression beyond 250 degrees C, because no Mg/Si precipitates evolved.

Kai X, Chen C, Sun X, et al.

Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy

[J]. Mater. Des., 2016, 90: 1151

[本文引用: 1]

Yang Q Y, Yang D, Zhang Z Q, et al.

Flow behavior and microstructure evolution of AA6A82 aluminium alloy with high copper during hot compression deformation at elevated temperature

[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(03): 649

[本文引用: 3]

Khamei A A, Dehghani K.

Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy

[J]. Mater. Sci. Eng. A, 2015, 627: 1

[本文引用: 1]

Fan X H, Li M, Li D Y, et al.

Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation

[J]. Mater. Sci. Technol., 2014, 30(11): 1263

[本文引用: 1]

Tang X.

Study on dynamic compression deformation behavior of 6013 aluminum alloy

[D]. Changsha: Hunan University, 2018

[本文引用: 1]

唐 徐.

6013铝合金动态压缩变形行为研究

[D]. 长沙: 湖南大学, 2018

[本文引用: 1]

Li J, Wu X, Cao L, et al.

Hot deformation and dynamic recrystallization in Al-Mg-Si alloy

[J]. Mater. Charact., 2021, 173: 110976

[本文引用: 6]

Xiao G, Li L X, Ye T.

Flow stress curve correction and constitutive equation of 6013 aluminum alloy plane hot compression

[J]. Chin. J. Nonferrous. Met., 2014, 24(05): 1268

[本文引用: 4]

肖 罡, 李落星, 叶 拓.

6013铝合金平面热压缩流变应力曲线修正与本构方程

[J]. 中国有色金属学报, 2014, 24(05): 1268

[本文引用: 4]

Xiao G, Li L X, Ye T.

Optimization of hot deformation constitutive model of 6013 aluminum alloy based on material parameter correction

[J]. Chin. J. Nonferrous. Met., 2014, 24(06): 1393

[本文引用: 1]

肖 罡, 李落星, 叶 拓.

基于材料参数修正的6013铝合金热变形本构模型优化

[J]. 中国有色金属学报, 2014, 24(06): 1393

[本文引用: 1]

Liu S, Pan Q, Li H, et al.

Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy

[J]. J. Mater. Sci., 2019, 54(5): 4366

[本文引用: 1]

Li H, Yuan X, Zheng W, et al.

Flow stress equation for hot compression deformation of Al-Mg-Si alloy

[J]. J. Shenyang Univ. Technol., 2012, 34(6): 650

[本文引用: 1]

<FONT face=Verdana>In order to provide the theoretical basis for the establishment and optimization of technological parameters for hot working process, the flow stress behavior of the Al-Mg-Si alloy containing Zr element during hot compression deformation was studied with Gleeble1500 thermalmechanical simulator at temperatures from 653K to 803K and deformation rates from 0.01 s<SUP>-1</SUP> to 1 s<SUP>-1</SUP>. In additon, a mathematical model for the flow stress of material deformation was established with regression method. The results show that the alloy is a material sensitive to normal strain rate, and the obvious steadystate rheological feature exists on the true stresstrue strain curves. With increasing the deformation rate and decreasing the deformation temperature, the flow stress increases. The true stresstrue strain curves are dynamic recovery curves at lower deformation tempertures, and are dynamic recrystallization curves at higher deformation temperatures. The flow stress σ of the alloy can be described by the ZenerHollomon parameter including Arrhenius term, where the values of parameters A, α and n are 1.89×10<SUP>10</SUP>s<SUP>-1</SUP>, 0.024MPa<SUP>-1</SUP> and 7.46 respectively. Moreover, the activation energy Q for the hot deformation is 166.85kJ/mol.</FONT>

Li W Y, Yang F L, Ma Z, et al.

Hot deformation and mechanical properties of novel Al-Mg-Si-Cu alloy

[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1501

Xiao G, Yang Q, Li L, et al.

Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer

[J]. Met. Mater. Int., 2016, 22(1): 58

Wei T, Wang Y, Tang Z, et al.

The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy

[J]. Mater. Today Commun., 2021, 27: 102471

[本文引用: 2]

Yu Y, Pan Q, Wang W, et al.

Dynamic softening mechanisms and Zener-Hollomon parameter of Al-Mg-Si-Ce-B alloy during hot deformation

[J]. J. Mater. Res. Technol., 2021, 15: 6395

Xiao G, Yang Q, Li L.

Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method

[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(04): 1096

[本文引用: 1]

Xue J P, Huang D N, Zuo Z Z, et al.

Effect of extrusion temperature on microstructure and mechanical properties of welded zone of 6005A aluminum alloy

[J]. Chin. J. Nonferrous. Met., 2018, 28(07): 1291

[本文引用: 1]

薛江平, 黄东男, 左壮壮 .

挤压温度对6005A铝合金焊合区域显微组织和力学性能的影响

[J]. 中国有色金属学报, 2018, 28(07): 1291

[本文引用: 1]

Luo R, Cao Y, Bian H, et al.

Hot workability and dynamic recrystallization behavior of a spray formed 7055 aluminum alloy

[J]. Mater. Charact., 2021, 178: 111203

[本文引用: 1]

Sellars C M, Mctegart W J.

On the mechanism of hot deformation

[J]. Acta Metall., 1966, 14(9): 1136

[本文引用: 1]

Chamanfar A, Alamoudi M T, Nanninga N E, et al.

Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)

[J]. Mater. Sci. Eng. A, 2019, 743: 684

[本文引用: 1]

Huang K, Logé R E.

A review of dynamic recrystallization phenomena in metallic materials

[J]. Mater. Des., 2016, 111: 548

[本文引用: 2]

Kassner M E, Barrabes S R.

New developments in geometric dynamic recrystallization

[J]. Mater. Sci. Eng. A, 2005, 410-411: 152

[本文引用: 1]

Yu S, Chen L L, Luo R, et al.

Dynamic recrystallization and microstructure evolution mechanism of superalloy GH4169

[J]. Chin. J. Mater. Res., 2023, 37(03): 211

[本文引用: 1]

于 森, 陈乐利, 罗 锐 .

高温合金GH4169的动态再结晶和组织演化机制

[J]. 材料研究学报, 2023, 37(03): 211

[本文引用: 1]

Zhang J, Yi Y, Huang S, et al.

Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation

[J]. Mater. Sci. Eng. A, 2021, 804: 140650

[本文引用: 1]

/