Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 197-207    DOI: 10.11901/1005.3093.2023.205
  研究论文 本期目录 | 过刊浏览 |
不同温度回火低合金钢缺口拉伸性能的预测
齐恺力1,3, 胡德江2, 高崇3, 刘峰1,4, 庞建超3(), 邵琛玮3, 杨梦起2, 李守新3, 张哲峰3
1.辽宁石油化工大学机械工程学院 抚顺 113001
2.南方电网调峰调频发电有限公司检修试验分公司 广州 511400
3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
4.季华实验室 佛山 528200
Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures
QI Kaili1,3, HU Dejiang2, GAO Chong3, LIU Feng1,4, PANG Jianchao3(), SHAO Chenwei3, YANG Mengqi2, LI Shouxin3, ZHANG Zhefeng3
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.Maintenance and Test Branch, China Southern Power Grid Power Generation Co., Ltd., Guangzhou 511400, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Ji Hua Laboratory, Foshan 528200, China
引用本文:

齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
Kaili QI, Dejiang HU, Chong GAO, Feng LIU, Jianchao PANG, Chenwei SHAO, Mengqi YANG, Shouxin LI, Zhefeng ZHANG. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. Chinese Journal of Materials Research, 2024, 38(3): 197-207.

全文: PDF(19999 KB)   HTML
摘要: 

使用电子背散射衍射技术和扫描电镜观察在不同温度回火的35CrMo低合金钢的微观组织和应力集中系数不同的缺口试样拉伸断裂形貌,研究了回火温度对其拉伸性能、损伤机制和力学性能的影响。结果表明:淬火态和回火温度为150~200℃的35CrMo钢,其显微组织均为回火板条状马氏体;在400℃回火的试样其组织为均匀的屈氏体组织;缺口试样的断裂形式均为韧性和脆性混合断裂。两种应力集中系数(Kt = 3,5)的试样其缺口抗拉强度随回火温度变化的趋势相同,随着回火温度的升高缺口抗拉强度先升高后降低。Kt = 3回火温度为150℃的试样其抗拉强度最高为2626 MPa;Kt = 5回火温度为200℃的试样其抗拉强最高为2450 MPa。缺口的敏感度都> 1,即在不同温度回火后都发生缺口强化效应,且缺口敏感性随着回火温度的升高有下降的趋势。随着应力集中系数的增大在不同温度回火的试样其缺口强化效果都呈现出先上升后下降的趋势,在400℃回火的缺口试样其强化效率最显著。基于硬度与缺口抗拉强度的关系提出一种快速预测缺口抗拉强度的方法,预测结果的误差< 8%。

关键词 金属材料低合金钢回火温度微观组织缺口拉伸预测    
Abstract

The microstructure and notch tensile fracture morphologies at different stress concentration factors of the low alloy steel 35CrMo for the head cover bolts of the pump turbine of a storage power station were investigated by electron backscatter diffraction microscopy and scanning electron microscopy. The effects of tempering temperature on the relationship between tensile properties, damage mechanism and mechanical properties of 35CrMo steel were studied. The results show that the microstructures of tempered state at 150~200oC and quenched state are composed of lath martensite. After tempering at 400oC, the microstructure of tempered troostite is more uniform. The final fracture of the notched specimens is a mixture of ductile and brittle fracture. At the two stress concentration factors (Kt = 3, 5), the notch tensile strength has the same changing trend with the tempering temperature. With the tempering temperature increasing, the notch tensile strength first increases and then decreases. For Kt = 3, the highest tensile strength is 2626 MPa at tempering temperature of 150oC; when Kt = 5, the highest tensile strength is 2450 MPa at tempering temperature of 200oC. Notch sensitivity ratio (NSR) is greater than 1, that is, notch strengthening effect occurs after different tempering temperatures, and notch sensitivity tends to decrease with the increase of tempering temperature. With the increase of stress concentration factor, the notch strengthening effect of specimens treated at different tempering temperatures shows an increasing trend first and then a decreasing trend, and the notch strengthening efficiency was the most obvious when tempering at 400oC. Finally, based on the relationship between hardness and notch tensile strength, a fast prediction method of notch tensile strength was proposed, and the prediction error was less than 8%.

Key wordsmetallic materials    low-alloy steel    tempering temperature    microstructure    notch tensile prediction
收稿日期: 2023-03-30     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2022YFB3708200);南方电网调峰调频发电有限公司检修试验分公司科技项目(022200KK52180006)
通讯作者: 庞建超,副研究员,jcpang@imr.ac.cn,研究方向为材料疲劳与断裂
Corresponding author: PANG Jianchao, Tel:(024)83978879, E-mail: jcpang@imr.ac.cn
作者简介: 齐恺力,男,1995年生,硕士生
CSiCrMoMnPSFe
0.350.351.100.200.800.0040.0022Bal.
表1  35CrMo钢的化学成分
图1  顶盖螺栓用35CrMo钢的热处理工艺示意图
图2  缺口拉伸试样的尺寸
图3  不同回火温度35CrMo钢的EBSD结构特征
Heat-treatment proceduresQQT150QT200QT400
Kt = 32337262625092213
Kt = 52164230524502142
表2  不同回火温度35CrMo钢的缺口抗拉强度
图4  不同回火温度35CrMo钢缺口试样的拉伸应力-位移曲线
图5  回火温度对35CrMo钢缺口抗拉强度的影响
Heat-treatment proceduresQQT150QT200QT400
Kt = 35.556.918.309.61
Kt = 55.258.126.588.92
表3  不同回火温度35CrMo钢的缺口拉伸断面收缩率
图6  缺口抗拉强度与断面收缩率的关系
Sampleσb / MPaσy / MPaZ / %A / %
Q1977138033.2010.80
QT1501952136442.7811.00
QT2001891148747.6612.05
QT4001566135251.4812.10
表4  35CrMo钢在不同温度回火后的拉伸性能[28]
图7  不同回火温度处理35CrMo钢缺口拉伸与光滑拉伸性能对比
Heat-treatment proceduresQQT150QT200QT400
Kt = 31.1821.3451.3271.413
Kt = 51.0951.1811.2961.368
表5  在不同温度回火后35CrMo钢的缺口NSR值
Heat-treatment proceduresQQT150QT200QT400
Kt = 313.234.532.741.3
Kt = 59.5018.129.636.8
表6  不同温度回火的35CrMo钢的缺口抗拉强度增强率
图8  应力集中系数对不同回火温度35CrMo钢拉伸性能的影响
图9  Kt = 3的不同回火温度35CrMo钢的拉伸断口形貌
图10  Kt = 5的不同回火温度35CrMo钢的拉伸断口形貌
图11  35CrMo钢的缺口抗拉强度与硬度的关系
图12  马氏体钢的缺口抗拉强度与硬度的关系
1 Wang B Q, Chen L R, Chen X F. High Strength Bolt Connection [M]. Beijing: Metallurgical Industry Press, 1991: 8
1 王伯琴, 陈录如, 陈先峰. 高强度螺栓连接 [M]. 北京: 冶金工业出版社, 1991: 8
2 Wang Z W, Yang J W, Wang W, et al. Research on the flow-induced stress characteristics of head-cover bolts of a pump-turbine during turbine start-up [J]. Energies, 2022, 15(5): 1832
doi: 10.3390/en15051832
3 Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
3 惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
4 Liu L, Li P Y. Present situation and development tendency of high strength bolt steel [J]. J. Shanghai Univ. Eng. Sci., 2010, 24(2): 173
4 刘 雷, 李培耀. 高强度螺栓材料的研究现状与趋势 [J]. 上海工程技术大学学报, 2010, 24(2): 173
5 Feng Y Y. Study on design, preparation and properties of 2200 MPa grade low alloy steel [D]. Nanjing: Nanjing University of Science and Technology, 2018
5 冯亚亚. 2200 MPa级低合金钢设计制备与性能研究 [D]. 南京: 南京理工大学, 2018
6 Tian L, Borchers C, Kubota M, et al. A study of crack initiation in a low alloy steel [J]. Acta Mater., 2022, 223: 117474
doi: 10.1016/j.actamat.2021.117474
7 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(15): 1
doi: 10.1016/j.jmst.2019.03.012
8 Lee K H, Park S G, Kim M C, et al. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents [J]. Mater. Sci. Eng., 2011, 529A(25) : 156
9 Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
9 郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
10 Kınıt U, Bozca M. Heat treatment effects on the mechanical properties and microstructure of 30MnB4 steel bolts [J]. Mater. Test., 2014, 56(11-12): 945
doi: 10.3139/120.110654
11 Ahn S T, Kim D S, Nam W J. Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating [J]. J. Mater. Process. Technol., 2005, 160(1): 54
doi: 10.1016/j.jmatprotec.2004.03.019
12 Yu W, Qian Y J, Wu H B, et al. Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel [J]. J. Iron Steel Res. Int., 2011, 18(2): 64
13 Chang W S. Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process [J]. J. Mater. Sci., 2002, 37(10): 1973
doi: 10.1023/A:1015290930107
14 Zhao M Y, Peng T, Zhao J Q, et al. Effect of long-term aging on microstructure and mechanical properties of 20Cr1Mo1VTiB bolt steel [J]. Chin. J. Mater. Res., 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
14 赵孟雅, 彭 涛, 赵吉庆 等. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
15 Gong X T, Wu Z G, Li X, et al. Effect of heat treatment process on microstructure and mechanical properties of 20Cr1Mo1VTiB steel [J]. Iron Steel, 2018, 53(12): 105
15 龚雪婷, 武志广, 李 鑫 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响 [J]. 钢铁, 2018, 53(12): 105
16 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
16 王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
17 Yang F, Veljkovic M, Liu Y Q. Fracture simulation of partially threaded bolts under tensile loading [J]. Eng. Struct., 2021, 226: 111373
doi: 10.1016/j.engstruct.2020.111373
18 Hu Y, Shen L, Nie S D, et al. FE simulation and experimental tests of high-strength structural bolts under tension [J]. J. Constr. Steel Res., 2016, 126: 174
doi: 10.1016/j.jcsr.2016.07.021
19 Grimsmo E L, Aalberg A, Langseth M, et al. Failure modes of bolt and nut assemblies under tensile loading [J]. J. Constr. Steel Res., 2016, 126: 15
doi: 10.1016/j.jcsr.2016.06.023
20 Shu D L. Mechanical Properties of Engineering Materials. 3rd ed. [M]. Beijing: China Machine Press, 2016: 49
20 束德林. 工程材料力学性能. 第3版 [M]. 北京: 机械工业出版社, 2016: 49
21 Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
doi: 10.1038/srep10537 pmid: 26022892
22 Rosenberg G, Sinaiová I, Juhar L. Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators [J]. Mater. Sci. Eng., 2013, 582A: 347
23 Moore A M. Evaluation of the current resistance factors for high-strength bolts [D]. Cincinnati: University of Cincinnati, 2007
24 Yang M Q, Yang W J, Pang J C, et al. Fatigue life prediction method of 35CrMo alloy steel bolt [J]. J. Central South Univ. (Sci. Technol.), 2023, 54(5): 1748
24 杨梦起, 杨文军, 庞建超 等. 35CrMo 钢螺栓疲劳寿命预测方法研究 [J]. 中南大学学报(自然科学版), 2023, 54(5): 1748
25 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
26 Song L. Notch sensitivity of embrittled HR3C steel tube after service [J]. Mater. Mech. Eng., 2020, 44(2): 13
doi: 10.11973/jxgccl202002003
26 宋 利. 服役脆化态HR3C钢管的缺口敏感性 [J]. 机械工程材料, 2020, 44(2): 13
27 Zhang W Q, Wang J Y, Zhang X K. Notch effect of metallic material during tensile testing [J]. Phys. Test. Chem. Anal., 2008, 44A(10) : 533
27 张文泉, 王俊英, 张学昆. 金属材料拉伸试验的缺口效应 [J]. 理化检验, 2008, 44A(10) : 533
28 Yang M Q, Gao C, Pang J C, et al. High-cycle fatigue behavior and fatigue strength prediction of differently heat-treated 35CrMo steels [J]. Metals, 2022, 12(4): 688
doi: 10.3390/met12040688
29 Xu Z Y, Huang B L, Yan G Q. China Materials Enginering Canon. Vol. 26: Material Characterization and Detection Technology [M]. Beijing: Chemical Industry Press, 2005: 500
29 徐祖耀, 黄本立, 鄢国强. 中国材料工程大典. 第26卷: 材料表征与检测技术 [M]. 北京: 化学工业出版社, 2005: 500
30 Wang L, Park J H, Choi N S. Observation of notch effect in Al6061-T6 specimens under tensile loading using digital image correlation and finite element method [J]. J. Mech. Sci. Technol., 2020, 34(3): 1049
doi: 10.1007/s12206-020-0207-3
31 Xu J Q. Theory on the Strength of Materials [M]. Shanghai: Shanghai Jiao Tong University Press, 2009: 56
31 许金泉. 材料强度学 [M]. 上海: 上海交通大学出版社, 2009: 56
32 Pang J C, Li S X, Wang Z G, et al. Relations between fatigue strength and other mechanical properties of metallic materials [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37(9): 958
doi: 10.1111/ffe.v37.9
33 Matsuoka S. Relationship between 0.2% proof stress and vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS [J]. Trans. Japan Soc. Mech. Eng. Ser., 2004, 70A(698) : 1535
34 Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure [J]. Acta Mater., 2013, 61(5): 1820
doi: 10.1016/j.actamat.2012.12.004
35 Megahed M M, Abd-Allah N M, Eleiche A M. Modeling of notch tensile behavior of martensitic steels [J]. J. Mater. Eng. Perform., 2003, 12(1): 61
doi: 10.1361/105994903770343493
[1] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[3] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[4] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[14] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.