|
|
不同温度回火低合金钢缺口拉伸性能的预测 |
齐恺力1,3, 胡德江2, 高崇3, 刘峰1,4, 庞建超3( ), 邵琛玮3, 杨梦起2, 李守新3, 张哲峰3 |
1.辽宁石油化工大学机械工程学院 抚顺 113001 2.南方电网调峰调频发电有限公司检修试验分公司 广州 511400 3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 4.季华实验室 佛山 528200 |
|
Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures |
QI Kaili1,3, HU Dejiang2, GAO Chong3, LIU Feng1,4, PANG Jianchao3( ), SHAO Chenwei3, YANG Mengqi2, LI Shouxin3, ZHANG Zhefeng3 |
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China 2.Maintenance and Test Branch, China Southern Power Grid Power Generation Co., Ltd., Guangzhou 511400, China 3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.Ji Hua Laboratory, Foshan 528200, China |
引用本文:
齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
Kaili QI,
Dejiang HU,
Chong GAO,
Feng LIU,
Jianchao PANG,
Chenwei SHAO,
Mengqi YANG,
Shouxin LI,
Zhefeng ZHANG.
Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. Chinese Journal of Materials Research, 2024, 38(3): 197-207.
1 |
Wang B Q, Chen L R, Chen X F. High Strength Bolt Connection [M]. Beijing: Metallurgical Industry Press, 1991: 8
|
1 |
王伯琴, 陈录如, 陈先峰. 高强度螺栓连接 [M]. 北京: 冶金工业出版社, 1991: 8
|
2 |
Wang Z W, Yang J W, Wang W, et al. Research on the flow-induced stress characteristics of head-cover bolts of a pump-turbine during turbine start-up [J]. Energies, 2022, 15(5): 1832
doi: 10.3390/en15051832
|
3 |
Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
|
3 |
惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
|
4 |
Liu L, Li P Y. Present situation and development tendency of high strength bolt steel [J]. J. Shanghai Univ. Eng. Sci., 2010, 24(2): 173
|
4 |
刘 雷, 李培耀. 高强度螺栓材料的研究现状与趋势 [J]. 上海工程技术大学学报, 2010, 24(2): 173
|
5 |
Feng Y Y. Study on design, preparation and properties of 2200 MPa grade low alloy steel [D]. Nanjing: Nanjing University of Science and Technology, 2018
|
5 |
冯亚亚. 2200 MPa级低合金钢设计制备与性能研究 [D]. 南京: 南京理工大学, 2018
|
6 |
Tian L, Borchers C, Kubota M, et al. A study of crack initiation in a low alloy steel [J]. Acta Mater., 2022, 223: 117474
doi: 10.1016/j.actamat.2021.117474
|
7 |
Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(15): 1
doi: 10.1016/j.jmst.2019.03.012
|
8 |
Lee K H, Park S G, Kim M C, et al. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents [J]. Mater. Sci. Eng., 2011, 529A(25) : 156
|
9 |
Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
|
9 |
郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
|
10 |
Kınıt U, Bozca M. Heat treatment effects on the mechanical properties and microstructure of 30MnB4 steel bolts [J]. Mater. Test., 2014, 56(11-12): 945
doi: 10.3139/120.110654
|
11 |
Ahn S T, Kim D S, Nam W J. Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating [J]. J. Mater. Process. Technol., 2005, 160(1): 54
doi: 10.1016/j.jmatprotec.2004.03.019
|
12 |
Yu W, Qian Y J, Wu H B, et al. Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel [J]. J. Iron Steel Res. Int., 2011, 18(2): 64
|
13 |
Chang W S. Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process [J]. J. Mater. Sci., 2002, 37(10): 1973
doi: 10.1023/A:1015290930107
|
14 |
Zhao M Y, Peng T, Zhao J Q, et al. Effect of long-term aging on microstructure and mechanical properties of 20Cr1Mo1VTiB bolt steel [J]. Chin. J. Mater. Res., 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
|
14 |
赵孟雅, 彭 涛, 赵吉庆 等. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
|
15 |
Gong X T, Wu Z G, Li X, et al. Effect of heat treatment process on microstructure and mechanical properties of 20Cr1Mo1VTiB steel [J]. Iron Steel, 2018, 53(12): 105
|
15 |
龚雪婷, 武志广, 李 鑫 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响 [J]. 钢铁, 2018, 53(12): 105
|
16 |
Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
|
16 |
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
|
17 |
Yang F, Veljkovic M, Liu Y Q. Fracture simulation of partially threaded bolts under tensile loading [J]. Eng. Struct., 2021, 226: 111373
doi: 10.1016/j.engstruct.2020.111373
|
18 |
Hu Y, Shen L, Nie S D, et al. FE simulation and experimental tests of high-strength structural bolts under tension [J]. J. Constr. Steel Res., 2016, 126: 174
doi: 10.1016/j.jcsr.2016.07.021
|
19 |
Grimsmo E L, Aalberg A, Langseth M, et al. Failure modes of bolt and nut assemblies under tensile loading [J]. J. Constr. Steel Res., 2016, 126: 15
doi: 10.1016/j.jcsr.2016.06.023
|
20 |
Shu D L. Mechanical Properties of Engineering Materials. 3rd ed. [M]. Beijing: China Machine Press, 2016: 49
|
20 |
束德林. 工程材料力学性能. 第3版 [M]. 北京: 机械工业出版社, 2016: 49
|
21 |
Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
doi: 10.1038/srep10537
pmid: 26022892
|
22 |
Rosenberg G, Sinaiová I, Juhar L. Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators [J]. Mater. Sci. Eng., 2013, 582A: 347
|
23 |
Moore A M. Evaluation of the current resistance factors for high-strength bolts [D]. Cincinnati: University of Cincinnati, 2007
|
24 |
Yang M Q, Yang W J, Pang J C, et al. Fatigue life prediction method of 35CrMo alloy steel bolt [J]. J. Central South Univ. (Sci. Technol.), 2023, 54(5): 1748
|
24 |
杨梦起, 杨文军, 庞建超 等. 35CrMo 钢螺栓疲劳寿命预测方法研究 [J]. 中南大学学报(自然科学版), 2023, 54(5): 1748
|
25 |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
|
26 |
Song L. Notch sensitivity of embrittled HR3C steel tube after service [J]. Mater. Mech. Eng., 2020, 44(2): 13
doi: 10.11973/jxgccl202002003
|
26 |
宋 利. 服役脆化态HR3C钢管的缺口敏感性 [J]. 机械工程材料, 2020, 44(2): 13
|
27 |
Zhang W Q, Wang J Y, Zhang X K. Notch effect of metallic material during tensile testing [J]. Phys. Test. Chem. Anal., 2008, 44A(10) : 533
|
27 |
张文泉, 王俊英, 张学昆. 金属材料拉伸试验的缺口效应 [J]. 理化检验, 2008, 44A(10) : 533
|
28 |
Yang M Q, Gao C, Pang J C, et al. High-cycle fatigue behavior and fatigue strength prediction of differently heat-treated 35CrMo steels [J]. Metals, 2022, 12(4): 688
doi: 10.3390/met12040688
|
29 |
Xu Z Y, Huang B L, Yan G Q. China Materials Enginering Canon. Vol. 26: Material Characterization and Detection Technology [M]. Beijing: Chemical Industry Press, 2005: 500
|
29 |
徐祖耀, 黄本立, 鄢国强. 中国材料工程大典. 第26卷: 材料表征与检测技术 [M]. 北京: 化学工业出版社, 2005: 500
|
30 |
Wang L, Park J H, Choi N S. Observation of notch effect in Al6061-T6 specimens under tensile loading using digital image correlation and finite element method [J]. J. Mech. Sci. Technol., 2020, 34(3): 1049
doi: 10.1007/s12206-020-0207-3
|
31 |
Xu J Q. Theory on the Strength of Materials [M]. Shanghai: Shanghai Jiao Tong University Press, 2009: 56
|
31 |
许金泉. 材料强度学 [M]. 上海: 上海交通大学出版社, 2009: 56
|
32 |
Pang J C, Li S X, Wang Z G, et al. Relations between fatigue strength and other mechanical properties of metallic materials [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37(9): 958
doi: 10.1111/ffe.v37.9
|
33 |
Matsuoka S. Relationship between 0.2% proof stress and vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS [J]. Trans. Japan Soc. Mech. Eng. Ser., 2004, 70A(698) : 1535
|
34 |
Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure [J]. Acta Mater., 2013, 61(5): 1820
doi: 10.1016/j.actamat.2012.12.004
|
35 |
Megahed M M, Abd-Allah N M, Eleiche A M. Modeling of notch tensile behavior of martensitic steels [J]. J. Mater. Eng. Perform., 2003, 12(1): 61
doi: 10.1361/105994903770343493
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|