Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 390-400    DOI: 10.11901/1005.3093.2023.516
  研究论文 本期目录 | 过刊浏览 |
新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理
李若浩1, 胡霄雨2, 王中成3, 李浩4, 杨勇4, 徐乐1(), 梁恩溥1, 何肖飞1
1.钢铁研究总院有限公司 特殊钢研究院 北京 100081
2.中国金属学会 北京 100010
3.内蒙古北方重工业集团有限公司 包头 014010
4.重庆长安望江工业集团有限公司 重庆 400020
High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr
LI Ruohao1, HU Xiaoyu2, WANG Zhongcheng3, LI Hao4, YANG Yong4, XU Le1(), LIANG Enpu1, HE Xiaofei1
1.Research Institite of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
2.The Chinese Society for Metals, Beijing 100010, China
3.Inner Mongolia North Heavy Industries Group, Baotou 014010, China
4.Chongqing Changan Wangjiang Industry Group Co., Ltd., Chongqing 400020, China
引用本文:

李若浩, 胡霄雨, 王中成, 李浩, 杨勇, 徐乐, 梁恩溥, 何肖飞. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理[J]. 材料研究学报, 2024, 38(5): 390-400.
Ruohao LI, Xiaoyu HU, Zhongcheng WANG, Hao LI, Yong YANG, Le XU, Enpu LIANG, Xiaofei HE. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr[J]. Chinese Journal of Materials Research, 2024, 38(5): 390-400.

全文: PDF(19676 KB)   HTML
摘要: 

使用JMatpro和Thermo-Calc软件优化25Cr3Mo3NiNbZr钢的成分,使用透射电镜(TEM)、电子背散射衍射(EBSD)和相分析等手段表征在700℃高温拉伸前后试样的显微组织和析出相以研究其高温强化机理。结果表明:25CrMo3NiTiVNbZr钢700℃的高温抗拉强度和屈服强度分别为543 MPa、409 MPa,比25Cr3Mo3NiNbZr钢提高了139 MPa和123 MPa。根据对这种钢高温强化机理的分析,析出强化是主要强化方式。在700℃高温拉伸25CrMo3NiTiVNbZr钢其析出强化增量为367 MPa,比25Cr3Mo3NiNbZr钢提高147 MPa,其主要原因是在25CrMo3NiTiVNbZr中析出了热稳定性更高、尺寸更小(平均尺寸为7.93 nm)的析出相。

关键词 金属材料高温强度成分优化强化机理纳米析出相    
Abstract

A novel secondary hardened steel 25CrMo3NiTiVNbZr was developed via optimization the chemical composition of the 25Cr3Mo3NiNbZr steel bymeans of the so called JMatpro and Thermo-Calc software. Then the microstructure, phase composition, morphology of precipitates and mechanical performance at 700℃ of the 25CrMo3NiTiVNbZr steel were characterized by means of transmission electron microscopy (TEM), electron backscattering diffraction (EBSD), while its the high-temperature streng-thening mechanism was also elucidated. The results show that the tensile strength and yield strength of 25CrMo3NiTiVNbZr steel at 700oC are 543 MPa and 409 MPa, respectively, which are 139 MPa and 123 MPa higher than that of 25Cr3Mo3NiNbZr steel. The high-temperature strengthening of the 25CrMo3NiTiVNbZr steel may mainly ascribed to themechanism, precipitation strengthening. In the process of being stretched at 700oC, the precipitation strengthening increment derived from the precipitation of the strengthening phase for the 25CrMo3NiTiVNbZr steel reached 367 MPa, which was 147 MPa higher than that of the 25Cr3Mo3NiNbZr steel. This is mainly due to the higher thermal stability and smaller size (average size at 7.93 nm) of the precipitated strengthening phases in the 25CrMo3NiTiVNbZr steel. After high-temperature stretching, the average size of precipitates remained at 8.14 nm.

Key wordsmetallic materials    high temperature mechanics    ingredient optimization    strengthening mechanism    nanoprecipitated phase
收稿日期: 2023-10-19     
ZTFLH:  TG142  
基金资助:农机装备材料生产应用示范平台(TC200H01X/05)
通讯作者: 徐乐,正高级工程师,xule@nercast.com,研究方向为纳米析出强化高强高韧马氏体钢
Corresponding author: XU Le, Tel: 18911259273, E-mail: xule@nercast.com
作者简介: 李若浩,男,1999年生,硕士生
SteelCCrMoNiNbTiVZrFe
P00.283.03.00.80.13--0.02Bal.
P10.281.03.00.80.130.080.50.02Bal.
表1  实验用钢的化学成分
图1  高温拉伸试样的尺寸
图2  Ti对平衡态析出相的影响
图3  Mo对平衡态析出相的影响
图4  V对平衡态析出相的影响
图5  Cr对平衡态析出相的影响
图6  P0、P1钢的平衡相图
图7  P0、P1钢的700℃高温性能
图8  700℃高温拉伸前后析出相的形貌
图9  P0钢和P1钢700℃拉伸前后析出相尺寸的变化
The mass fraction of the elements in the M3C / %
FeCrMoNiVC*Σ
P0 steelBefore0.3930.2010.2370.006-0.0540.891
After0.2080.1450.1580.0046-0.0330.549
P1 steelBefore0.2070.0460.1410.00760.0150.0260.443
After0.07840.0190.05770.00450.00740.01040.177
表2  700℃拉伸前后试验钢中M3C相的析出量
The mass fraction of the elements in the MC + M2C / %
FeCrMoNbTiVZrΣ
P0 steelBefore0.0980.4581.9410.109--0.022.606
After0.1120.5172.070.109--0.022.805
P1 steelBefore0.0650.1031.7820.130.080.4160.0182.594
After0.0520.1251.9190.1280.080.4010.0182.723
表3  700℃拉伸前后试验钢中MC相+ M2C相的析出量
SteelAverage size before 700oC/nmAverage size after 700oC/nm
P018.0020.47
P17.938.14
表4  700℃拉伸前后析出相的等效球状平均直径
图10  P0钢中长棒状碳化物的元素分布
图11  P1钢中长棒状碳化物的元素分布
图12  P0钢和P1钢的EBSD和原奥晶界叠加图和原奥氏体的晶粒尺寸统计
图13  试验钢的高温强化增量
1 Wang M Q, Dong H, Hui W J, et al. Effect of heat treatment on microstructure and mechanical properties of Cr-Ni-Mo-Nb steel[J]. Mater. Sci. Technol., 2007, 23(8): 963
2 Zhang Z, Zhang J, Yao Z, et al. Design for Novel Hot-Work Die Steel by Thermodynamic Calculation and Microstructural Examination[J]. Metals., 2019, 9(7): 805
3 Zhao L. A study on the strengthen reason of certain big gun tube material[D]. Naijing: Nanjing University of Science & Technology, 2008
3 赵 隆. 某炮钢材料的强化机理研究[D]. 南京: 南京理工大学, 2008
4 Ma X. Study on mechanical and wear resistance of 25Cr3Mo3NiNbZr steel[D]. Beijing: Central Iron & Steel Research Institute, 2019
4 马 潇. 25Cr3Mo3NiNbZr钢的力学与磨损性能研究[D]. 北京: 钢铁研究总院, 2019
5 Li Z D, Zheng L G. Evolution of secondary phase in G18CrMo2-6 steel during high temperature tempering[J]. Chin. J. Mater. R., 2016, 30(8): 561
5 李振江, 郑雷刚. G18CrMo2-6钢在高温回火过程中第二相的演变[J]. 材料研究学报, 2016, 30(8): 561
doi: 10.11901/1005.3093.2015.640
6 Gu J, Li J, Yanagimoto J, et al. Microstructural evolution and mechanical property changes of a new nitrogen-alloyed Cr-Mo-V hot-working die steel during tempering[J]. Mater. Sci. Eng., 2021(804): 140721
7 Wu D, Wang F, Cheng J, et al. Effects of Nb and tempering time on carbide precipitation behavior and mechanical properties of Cr-Mo-V steel for brake discs[J]. Steel. Res. Int., 2018, 89(5): 1700491
8 Wen T, Hu X, Song Y, et al. Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Mater. Sci. Eng., 2013, 588(20): 201
9 Wang X L. Study on the microstructure and mechanical properties of high strength martensitic steel of 1350 MPa grade[D]. Kunming: Kunming University of Science and Technolgy, 2018
9 王小龙. 1350 MPa级高强度马氏体钢组织与力学性能的研究[D]. 昆明: 昆明理工大学, 2018
10 Wan R, Sun F, Zhang L, et al. Development and study of high-strength low-Mo fire-resistant steel[J]. Mater. Des., 2012, 36: 227
11 Zhang Z, Zhang J, Lian Y, et al. Effects of vanadium content on the carbides transformation and strengthening mechanism of MPS-700V hot-work die steel at room and elevated temperatures[J]. Mater. Sci. Eng., 2021, 813: 141091
12 Chen J, Jia Z, Wang J, et al. Newly developed high-strength martensitic stainless steel for the snipe rifle barrel with high shooting accuracy[J]. J. Mater. R. Technol., 2023, 24: 3956
13 Liu Q C, Yong Q L, Zheng Z W. Effect of vanadium on microstructure and high temperature properties of fire-resistant steels[J]. Iron Steel, 2016, 51(7): 76
13 刘庆春, 雍岐龙, 郑之旺. 钒对耐火钢显微组织及高温性能的影响[J]. 钢铁, 2016, 51(7): 76
14 Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nucl. Eng. Des., 2008, 238(2): 408
15 Yang G, Sun X, Li Z, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Mater. Des., 2013, 50: 102
16 Wang Y L. Regulation of microstructure and properties and damage mechanism study for 4Cr5MoSiV1(Ti)[D]. Luoyang: Henan Univesity of Science and Technology, 2021
16 王要利. 4Cr5MoSiV1(Ti)组织性能调控及损伤机理研究[D]. 洛阳: 河南科技大学, 2021
17 Xie Y X, Cheng X N, Ju Y L, et al. Research progress on carbide precipitation and evolution for H13 and H13-modifies hot working die steels during different heat treatment schedules[J]. Mater. Rep., 2023, 37(23): 177
17 谢奕心, 程晓农, 鞠玉琳 等. H13及改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报: 2023, 37(23): 177
18 Ding H, Liu T, Wei J, et al. Microstructure and tempering softening mechanism of modified H13 steel with the addition of Tungsten, Molybdenum, and lowering of Chromium[J]. Mater. Design., 2022, 224: 111317
19 Wang Q, Zhang C, Li R, et al. Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times[J]. Mater. Sci. Eng., 2013, 559: 130
20 Chen J, Liu H, Pan Z, et al. Carbide evolution and service life of simulated post weld heat treated 2.25 Cr-1Mo steel[J]. Mater. Sci. Eng., 2015, 622: 153
21 Abderrahim F Z, Faraoun H I. Structure Ouahrani T bonding and stability of semi-carbides M2C and sub-carbides M4C (M = V, Cr, Nb, Mo, Ta, W): A first principles investigation[J]. Physica B., 2012, 407(18): 3833
22 Yong Q L. The Second Phase in Steel[M]. Beijing: Metallurgical Industry Press, 2006: 1
22 雍岐龙. 铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 1
23 Liang J W, Shen Y F, Misra R D K, et al. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. J. Mater. Sci. Technol., 2021, 83: 131
doi: 10.1016/j.jmst.2020.11.078
24 Takaki S, Akama D, Nakada N, et al. Effect of grain boundary segregation of interstitial elements on Hall-Petch coefficient in steels[J]. Mater. Trans., 2014, 55: 28
25 Ma H X, Li Y G. Measurement of size distribution and volume fraction of precipitates in silicon steel[J]. J. Mater. Sci. Eng., 2002(03): 328
25 马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数的测定[J]. 材料科学与工程, 2002(03): 328
26 Fu J, Li G, Mao X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metall. Mater. Trans., 2011, 42: 3797
27 Gladman T. Precipitation hardening in metals[J]. Materi. Sci. Technol., 1999, 15(1): 30
28 Ding H, Yuan Z Z, Liu T, et al. Microstructure and high-temperature tensile behavior of modified H13 steel with the addition of tungsten, molybdenum, and lowering of chromium[J]. Mater. Sci. Eng., 2023, 866: 144655
[1] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.
[2] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[3] 刘加晓, 胡晓, 丁桦. 时效处理对Fe-12Mn-8Al-1C-3Cu轻质钢的组织演变和力学性能的影响[J]. 材料研究学报, 2024, 38(5): 356-364.
[4] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.