Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 356-364    DOI: 10.11901/1005.3093.2023.270
  研究论文 本期目录 | 过刊浏览 |
时效处理对Fe-12Mn-8Al-1C-3Cu轻质钢的组织演变和力学性能的影响
刘加晓1,2, 胡晓1,2, 丁桦1,2()
1.东北大学材料科学与工程学院 沈阳 110819
2.东北大学 辽宁省轻量化用关键金属结构材料重点实验室 沈阳 110819
Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel
LIU Jiaxiao1,2, HU Xiao1,2, DING Hua1,2()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China
引用本文:

刘加晓, 胡晓, 丁桦. 时效处理对Fe-12Mn-8Al-1C-3Cu轻质钢的组织演变和力学性能的影响[J]. 材料研究学报, 2024, 38(5): 356-364.
Jiaxiao LIU, Xiao HU, Hua DING. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel[J]. Chinese Journal of Materials Research, 2024, 38(5): 356-364.

全文: PDF(15503 KB)   HTML
摘要: 

对中锰轻质钢进行不同时间的时效处理,研究了时效时间对其微观组织演变和力学性能的影响。结果表明,时效处理时间对析出物有显著的影响。时效时间短于30 min时,在奥氏体基体内析出大量调幅分解生成的弥散分布的晶内κ'碳化物。随着时效时间的延长,除了在晶内析出κ'碳化物,在晶间也发生共析反应在晶界处形成κ-碳化物,构成(α-铁素体+晶间κ-碳化物)片层组织。晶内κ'碳化物的生成使钢的强度提高,但是晶间κ-碳化物的析出使其塑性显著降低。与长时时效相比,短时时效使钢的强度显著提高,还使其保持较高的伸长率,使其具有更优异的综合力学性能。时效30 min的钢,其抗拉强度为1031 MPa,屈服强度为784 MPa,伸长率为41.08%,强塑积为42.35 GPa·%。

关键词 金属材料轻质钢时效处理组织演变应变硬化位错滑移    
Abstract

By aging treatment of a medium manganese lightweight steel at 550oC, the evolution of its microstructure and mechanical properties was analyzed. The results indicate that aging treatment has a significant impact on precipitates. When the aging time is less than 30 minutes, a large number of intragranular κ'-carbides formed by spinodal decomposition, which distributed dispersedly in the austenite matrix. As the aging time increases, besides the intragranular κ'-carbides, intergranular κ-carbides are also formed at grain boundaries through eutectoid reactions as a layered structure of α ferrite and κ-carbide. Intragranular κ'-carbides greatly increase the strength, but intergranular κ-carbides significantly reduce the ductility of the steel. Compared with long-time aging, the strength of the steel can be significantly increased by short-time aging, while the steel still maintains a high elongation with better overall mechanical properties. Among them, the good performance is achieved for the steel after aging for 30 minutes, namely a tensile strength of 1031 MPa, yield strength of 784 MPa, an elongation of 41.08%, and a product of strength and elongation of 42.35 GPa·%.

Key wordsmetallic materials    lightweight steel    aging treatment    microstructural evolution    strain hardening    dislocation slip
收稿日期: 2023-05-30     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(U1760205)
通讯作者: 丁桦,教授,dingh@smm.neu.edu.cn,研究方向为高性能材料的开发及组织性能控制
Corresponding author: DING Hua, Tel: (024)23604263, E-mail: dingh@smm.neu.edu.cn
作者简介: 刘加晓,男,1998年生,硕士
SteelCMnAlCuFe
Fe-12Mn-8Al-1C-3Cu1.0212.088.343.31Bal.
表1  实验钢的实际成分(质量分数,%)
图1  Fe-12Mn-8Al-1C-3Cu钢的形变热处理流程图(CR:冷轧;HR:热轧;WQ:水冷)
图2  Fe-12Mn-8Al-1C-3Cu钢在550℃时效不同时间后的XRD谱
图3  Fe-12Mn-8Al-1C-3Cu钢在550℃时效不同时间后的显微组织
AT / min0103060300900
GS / μm22.4722.4922.5622.8423.2124.36
表2  时效不同时间后奥氏体晶粒的平均尺寸
图4  Fe-12Mn-8Al-1C-3Cu钢在550℃时效不同时间后的TEM形貌
图5  实验钢在550℃时效不同时间后的工程应力-工程应变曲线和力学性能
图6  实验钢在550℃时效10min后不同量变形后的变形组织TEM形貌
图7  实验钢时效300 min后的EBSD分析
图8  实验钢的应变硬化率与真应变的关系
1 Zhen W Y. Explore the new opportunity and situation of the domestic auto industry after the epidemic[J]. Auto Rev., 2020, (7): 36
1 甄文媛. 探寻疫后国内汽车产业的新机与新局[J]. 汽车纵横, 2020, (7): 36
2 Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile[J]. Strategic Study CAE, 2009, 11(9): 20
2 马鸣图, 易红亮, 路洪洲 等. 论汽车轻量化[J]. 中国工程科学, 2009, 11(9): 20
3 Xiong P L. Research progress of lightweight automotive materials and structures[J]. Auto Time, 2020, (1): 96
3 熊培练. 汽车材料及结构轻量化的研究进展[J]. 时代汽车, 2020, (1): 96
4 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Prog. Mater. Sci., 2017, 89: 345
5 Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Mater. Des., 2015, 76: 32
6 Zhang L F, Song R B, Zhao C, et al. Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., 2015, 643A: 183
7 Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy[J]. Scr. Mater., 2010, 63(2): 162
8 Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
9 Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scr. Mater., 2013, 68(6): 343
10 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Res. Int., 2006, 77(9-10): 627
11 Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition[J]. Metall. Mater. Trans., 2014, 45A(5): 2421
12 Han K H, Choo W K. Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys[J]. Metall. Trans., 1989, 20A(2): 205
13 Liu S Z, Li Y, Wang C X, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treat. Met., 2015, 40(9): 120
13 刘少尊, 厉 勇, 王春旭 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120
14 Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. J. Mater. Eng. Perform., 2000, 9(6): 597
15 Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
16 Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-wei-ght steel[J]. Acta Mater., 2017, 122: 332
17 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Mater., 2017, 140: 258
18 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Mater. Sci. Eng., 2015, 639A: 187
19 Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging[J]. Mater. Sci. Eng., 2023, 875A: 145109
20 Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel[J]. Metall. Mater. Trans., 2009, 40A(7): 1520
21 Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
22 Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, 675A: 243
23 Tan S P, Wang Z H, Cheng S C, et al. Effect of Cu content on aging precipitation behaviors of Cu-rich phase in Fe-Cr-Ni alloy[J]. J. Iron Steel Res. Int., 2010, 17(5): 63
24 Gaber A, Ali A M, Matsuda K, et al. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques[J]. J. Alloys Compd., 2007, 432(1-2): 149
25 Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu[J]. China Foundry, 2021, 18(3): 207
doi: 10.1007/s41230-021-1026-6
26 Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Mater., 2017, 135: 215
27 Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel[J]. Acta Mater., 2017, 122: 332
28 Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties[J]. Acta Mater., 1997, 45(12): 4877
29 Cheng W C. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 al austenitic steel after quenching and annealing[J]. JOM, 2014, 66(9): 1809
30 Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Mater. Sci. Eng., 2018, 715A: 25
31 Han D. Investigations on the microstructures-properties relationship and deformation mechanism in high strength Fe-Mn-Al-C low density steels[D]. Shenyang: Northeastern University, 2020
31 韩 东. Fe-Mn-Al-C低密度高强钢的组织性能及变形机制研究[D]. 沈阳: 东北大学, 2020
32 Cheng W C, Song Y S, Lin Y S, et al. On the eutectoid reaction in a quaternary Fe-C-Mn-Al alloy: austenite→ferrite + kappa-carbide + M23C6 carbide[J]. Metall. Mater. Trans., 2014, 45A(3): 1199
33 Lu W J, Zhang X F, Qin R S. κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J]. Mater. Lett., 2015, 138: 96
34 Zhang M X, Kelly P M. The morphology and formation mechanism of pearlite in steels[J]. Mater. Charact., 2009, 60(6): 545
35 Darken L S, Fisher P M. Decomposition of Austenite by Diffusional Processes[M]. New York: Intersciences Publishers, 1962: 197
36 Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening[J]. Met. Mater. Int., 2018, 24: 702
37 Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Mater. Sci. Eng., 2016, 652A: 69
38 Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
39 Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels[D]. Shenyang: Northeastern University, 2015
39 吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究[D]. 沈阳: 东北大学, 2015
[1] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.
[2] 李若浩, 胡霄雨, 王中成, 李浩, 杨勇, 徐乐, 梁恩溥, 何肖飞. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理[J]. 材料研究学报, 2024, 38(5): 390-400.
[3] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[4] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.