Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 161-167    DOI: 10.11901/1005.3093.2023.201
  研究论文 本期目录 | 过刊浏览 |
电化学渗氮对不锈钢表面结构的影响
陈真勇1,2, 魏欣欣3, 徐妍婷1,2, 张波3(), 马秀良3,4
1.中国科学技术大学材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.松山湖材料实验室 大湾区显微科学与技术研究中心 东莞 523830
4.中国科学院物理研究所 北京 100190
Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel
CHEN Zhenyong1,2, WEI Xinxin3, XU Yanting1,2, ZHANG Bo3(), MA Xiuliang3,4
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China
3.Songshan Lake Materials Laboratory, Bay Area Center for Electron Microscopy, Dongguan 523830, China
4.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
Zhenyong CHEN, Xinxin WEI, Yanting XU, Bo ZHANG, Xiuliang MA. Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel[J]. Chinese Journal of Materials Research, 2024, 38(3): 161-167.

全文: PDF(7289 KB)   HTML
摘要: 

使用原子力显微技术和透射电子显微技术等手段,研究了电化学渗氮的304L不锈钢多尺度下表面结构的演变。结果表明,在电化学渗氮电位下304L不锈钢表面发生了钝化膜的局部阴极还原、金属基体的微区阳极溶解以及溶解的金属阳离子再沉积,从而形成了起伏幅度为几十纳米的微观粗糙表面。在扫描透射成像模式下进行的超级能谱分析结果表明,表面沉积物的主要组成是Fe的氧化物,进一步佐证了在渗氮过程中发生了Fe的微区阳极溶解和Fe阳离子的再沉积过程。

关键词 材料表面与界面表面结构演变电化学渗氮透射电子显微技术原子力显微技术304L不锈钢    
Abstract

Nitrogen is well known as a beneficial alloying element which entitles stainless steels an enhanced corrosion resistance against chloride attack. The introduction of N into the surface of stainless steel can be achieved by electrochemical nitriding. The role that Nitrogen plays in pitting resistance has long been discussed focusing on the distribution and incorporation form of N as well as the modification to the local corrosive circumstance induced by the N-participated electrode reactions. For electrochemical nitriding, stainless steel surface, as the place on which involved electrode reactions occur, is expected to undergo structural evolution. This, to some extent, would influence the corrosion property of nitrided stainless steel. Detecting the structural evolution occurring in the electrochemical nitriding is of great significance for deciphering the involved electrode reactions and thus optimizing the nitriding parameters. In this work, using atomic force microscopy as well as transmission electron microscopy, we have clarified the concomitant localized reductive dissolution of passive film, anodic dissolution of metal matrix at micro-anodic sites, as well as re-deposition of the dissolved metal cations, which roughens the surface by forming the undulations at surface with undulation amplitude in the range of a few tens of nanometers. Element mapping analysis by Super EDS technique reveals that the re-deposited product is mainly comprised of iron oxide, which indicates iron is dissolved and the resultant iron cations occurs re-deposition.

Key wordsmaterial surface and interface    surface structural evolution    electrochemical nitriding    transmission electron microscopy    atomic force microscopy    304L stainless steel
收稿日期: 2023-03-24     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(51971228);国家自然科学基金(51771212)
通讯作者: 张波,研究员,bozhang@sslab.org.cn,研究方向为基于电子显微学的腐蚀基础科学
Corresponding author: ZHANG Bo, Tel:13624078267, E-mail: bozhang@sslab.org.cn
作者简介: 陈真勇,男,1998年生,硕士生
图1  电化学渗氮电流密度随渗氮时间的变化
图2  304L不锈钢电化学渗氮前后在3.5%NaCl溶液中的阳极极化曲线
图3  电化学渗氮对304L不锈钢表面结构的影响
图4  304L不锈钢电化学渗氮前后的剖面显微图像
图5  电化学渗氮后沉积在不锈钢表面的沉积物能谱
图6  304L不锈钢渗氮前后的电化学阻抗谱
MaterialsRs / Ω·cm2Rct / MΩ·cm2Qdl / nΩ-1·s NNW / nΩ-1·s0.5
Unnitrided33.21.333770.935879
Nitrided29.87.535050.934464
表1  电化学渗氮前后EIS曲线拟合的参数值
1 Ozdemir A C, Buluş K, Zor K. Medium- to long-term nickel price forecasting using LSTM and GRU networks [J]. Resour. Policy, 2022, 78: 102906
doi: 10.1016/j.resourpol.2022.102906
2 Rashev T V, Eliseev A V, Zhekova L T, et al. High-nitrogen steel [J]. Steel Transl., 2019, 49(7): 433
doi: 10.3103/S0967091219070106
3 Simmons J W. Overview: high-nitrogen alloying of stainless ste-els [J]. Mater. Sci. Eng., 1996, 207A(2) : 159
4 Norström L Å. The influence of nitrogen and grain size on yield strength in type AISI 316L austenitic stainless steel [J]. Metal Sci., 1977, 11(6): 208
doi: 10.1179/msc.1977.11.6.208
5 Mori G, Bauernfeind D. Pitting and crevice corrosion of superaustenitic stainless steels [J]. Mater. Corros., 2004, 55(3): 164
6 Bandy R, Rooyen D V. Properties of nitrogen-containing stainless alloy designed for high resistance to pitting [J]. Corrosion, 1985, 41(4): 228
doi: 10.5006/1.3581995
7 Osozawa K, Okato N. Passivity and its breakdown on iron and iron-base alloys [R]. Houston, USA: National Association of Corrosion Engineers, 1976: 135
8 Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels [J]. Corros. Sci., 2002, 44(10): 2393
doi: 10.1016/S0010-938X(02)00040-9
9 Ives M B, Lu Y C, Luo J L. Cathodic reactions involved in metallic corrosion in chlorinated saline environments [J]. Corros. Sci., 1991, 32(1): 91
doi: 10.1016/0010-938X(91)90065-W
10 Lu Y C, Bandy R, Clayton C R, et al. Surface enrichment of nitrogen during passivation of a highly resistant stainless steel [J]. J. Electrochem. Soc., 1983, 130(8): 1774
doi: 10.1149/1.2120091
11 Lu Y C, Ives M B, Clayton C R. Synergism of alloying elements and pitting corrosion resistance of stainless steels [J]. Corros. Sci., 1993, 35(1-4): 89
doi: 10.1016/0010-938X(93)90137-6
12 Sadough Vanini A, Audouard J P, Marcus P. The role of nitrogen in the passivity of austenitic stainless steels [J]. Corros. Sci., 1994, 36(11): 1825
doi: 10.1016/0010-938X(94)90021-3
13 Mani S P, Anandan C, Rajendran N. Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC) [J]. RSC Adv., 2015, 5(79): 64466
doi: 10.1039/C5RA05412E
14 Wang H L, Teeter G, Turner J A. Modifying a stainless steel via electrochemical nitridation [J]. J. Mater. Chem., 2011, 21(7): 2064
doi: 10.1039/c0jm03585h
15 Liu B, Zhao H Y, Li F, et al. Characterization and corrosion behavior of high-nitrogen HP-13Cr stainless steel in CO2 and H2S environment [J]. Int. J. Electrochem. Sci., 2021, 16: 150915
doi: 10.20964/2021.01.62
16 Truman J E, Coleman M J, Pirt K R. Note on the influence of nitrogen content on the resistance to pitting corrosion of stainless steels [J]. Br. Corros. J., 1977, 12(4): 236
doi: 10.1179/000705977798318973
17 Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J]. Corros. Sci., 1995, 37(3): 467
doi: 10.1016/0010-938X(94)00148-Y
18 Park W I, Jung S M, Sasaki Y. Fabrication of ultra high nitrogen austenitic stainless steel by NH3 solution nitriding [J]. ISIJ Int., 2010, 50(11): 1546
doi: 10.2355/isijinternational.50.1546
19 Sah J, Joseph A, Jhala G, et al. On the effects of H2 and Ar on dual layer formed by plasma nitrocarburizing on austenitic stainless steels [J]. J. Mater. Eng. Perform., 2022, 31(4): 2664
doi: 10.1007/s11665-021-06380-1
20 Naeem M, Awan S, Shafiq M, et al. Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating [J]. Ceram. Int., 2022, 48(15): 21473
doi: 10.1016/j.ceramint.2022.04.115
21 Wang H L, Teeter G, Turner J A. Plasma nitrided type 349 stainless steel for polymer electrolyte membrane fuel cell bipolar plate-part I: nitrided in nitrogen plasma [J]. J. Fuel Cell Sci. Technol., 2010, 7(2): 021018
22 Li C X. Active screen plasma nitriding-an overview [J]. Surf. Eng., 2010, 26(1-2): 135
doi: 10.1179/174329409X439032
23 Zhang Z L, Bell T. Structure and corrosion resistance of plasma nitrided stainless steel [J]. Surf. Eng., 1985, 1(2): 131
doi: 10.1179/sur.1985.1.2.131
24 Willenbruch R D, Clayton C R, Oversluizen M, et al. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corros. Sci., 1990, 31: 179
doi: 10.1016/0010-938X(90)90106-F
25 Wang H L, Turner J A. Electrochemical nitridation of a stainless steel for PEMFC bipolar plates [J]. Int. J. Hydrogen Energy, 2011, 36(20): 13008
doi: 10.1016/j.ijhydene.2011.07.045
26 Tandon V, Patil A P. On the influence of cold working and electrochemical nitridation on the corrosion behaviour of 316L austenitic stainless steel in acidic environment [J]. Surf. Eng. Appl. Electrochem., 2020, 56(1): 63
doi: 10.3103/S1068375520010147
27 Lv J L, Jin H J, Liang T X. The effect of electrochemical nitridation on the corrosion resistance of the passive films formed on the 2205 duplex stainless steel [J]. Mater. Lett., 2019, 256: 126640
doi: 10.1016/j.matlet.2019.126640
28 Pugal Mani S, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J]. Energy, 2017, 133: 1050
doi: 10.1016/j.energy.2017.05.086
29 Lv J L, Liang T X, Luo H Y. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment [J]. J. Power Sources, 2015, 293: 692
doi: 10.1016/j.jpowsour.2015.06.006
30 Wang H, Turner J A. Modifying a stainless steel for PEMFC bipolar plates via electrochemical nitridation [J]. Fuel Cells, 2013, 13(5): 917
doi: 10.1002/fuce.v13.5
31 Nam N D, Jo D S, Kim J G, et al. Corrosion protection of CrN/TiN multi-coating for bipolar plate of polymer electrolyte membrane fuel cell [J]. Thin Solid Films, 2011, 519(20): 6787
doi: 10.1016/j.tsf.2011.01.207
32 Bottoli F, Jellesen M S, Christiansen T L, et al. High temperature solution-nitriding and low-temperature nitriding of AISI 316: effect on pitting potential and crevice corrosion performance [J]. Appl. Surf. Sci., 2018, 431: 24
doi: 10.1016/j.apsusc.2017.06.094
33 Ahila S, Reynders B, Grabke H J. The evaluation of the repassivation tendency of Cr-Mn and Cr-Ni steels using scratch technique [J]. Corros. Sci., 1996, 38(11): 1991
doi: 10.1016/S0010-938X(96)00092-3
34 Srinivasan A, Reynders B, Grabke H J. Localised corrosion behaviour of high and low nitrogen Cr-Mn steels [J]. Steel Res., 1995, 66(10): 439
doi: 10.1002/srin.1995.66.issue-10
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.