|
|
电化学渗氮对不锈钢表面结构的影响 |
陈真勇1,2, 魏欣欣3, 徐妍婷1,2, 张波3( ), 马秀良3,4 |
1.中国科学技术大学材料科学与工程学院 沈阳 110016 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3.松山湖材料实验室 大湾区显微科学与技术研究中心 东莞 523830 4.中国科学院物理研究所 北京 100190 |
|
Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel |
CHEN Zhenyong1,2, WEI Xinxin3, XU Yanting1,2, ZHANG Bo3( ), MA Xiuliang3,4 |
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China 3.Songshan Lake Materials Laboratory, Bay Area Center for Electron Microscopy, Dongguan 523830, China 4.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
Zhenyong CHEN,
Xinxin WEI,
Yanting XU,
Bo ZHANG,
Xiuliang MA.
Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel[J]. Chinese Journal of Materials Research, 2024, 38(3): 161-167.
1 |
Ozdemir A C, Buluş K, Zor K. Medium- to long-term nickel price forecasting using LSTM and GRU networks [J]. Resour. Policy, 2022, 78: 102906
doi: 10.1016/j.resourpol.2022.102906
|
2 |
Rashev T V, Eliseev A V, Zhekova L T, et al. High-nitrogen steel [J]. Steel Transl., 2019, 49(7): 433
doi: 10.3103/S0967091219070106
|
3 |
Simmons J W. Overview: high-nitrogen alloying of stainless ste-els [J]. Mater. Sci. Eng., 1996, 207A(2) : 159
|
4 |
Norström L Å. The influence of nitrogen and grain size on yield strength in type AISI 316L austenitic stainless steel [J]. Metal Sci., 1977, 11(6): 208
doi: 10.1179/msc.1977.11.6.208
|
5 |
Mori G, Bauernfeind D. Pitting and crevice corrosion of superaustenitic stainless steels [J]. Mater. Corros., 2004, 55(3): 164
|
6 |
Bandy R, Rooyen D V. Properties of nitrogen-containing stainless alloy designed for high resistance to pitting [J]. Corrosion, 1985, 41(4): 228
doi: 10.5006/1.3581995
|
7 |
Osozawa K, Okato N. Passivity and its breakdown on iron and iron-base alloys [R]. Houston, USA: National Association of Corrosion Engineers, 1976: 135
|
8 |
Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels [J]. Corros. Sci., 2002, 44(10): 2393
doi: 10.1016/S0010-938X(02)00040-9
|
9 |
Ives M B, Lu Y C, Luo J L. Cathodic reactions involved in metallic corrosion in chlorinated saline environments [J]. Corros. Sci., 1991, 32(1): 91
doi: 10.1016/0010-938X(91)90065-W
|
10 |
Lu Y C, Bandy R, Clayton C R, et al. Surface enrichment of nitrogen during passivation of a highly resistant stainless steel [J]. J. Electrochem. Soc., 1983, 130(8): 1774
doi: 10.1149/1.2120091
|
11 |
Lu Y C, Ives M B, Clayton C R. Synergism of alloying elements and pitting corrosion resistance of stainless steels [J]. Corros. Sci., 1993, 35(1-4): 89
doi: 10.1016/0010-938X(93)90137-6
|
12 |
Sadough Vanini A, Audouard J P, Marcus P. The role of nitrogen in the passivity of austenitic stainless steels [J]. Corros. Sci., 1994, 36(11): 1825
doi: 10.1016/0010-938X(94)90021-3
|
13 |
Mani S P, Anandan C, Rajendran N. Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC) [J]. RSC Adv., 2015, 5(79): 64466
doi: 10.1039/C5RA05412E
|
14 |
Wang H L, Teeter G, Turner J A. Modifying a stainless steel via electrochemical nitridation [J]. J. Mater. Chem., 2011, 21(7): 2064
doi: 10.1039/c0jm03585h
|
15 |
Liu B, Zhao H Y, Li F, et al. Characterization and corrosion behavior of high-nitrogen HP-13Cr stainless steel in CO2 and H2S environment [J]. Int. J. Electrochem. Sci., 2021, 16: 150915
doi: 10.20964/2021.01.62
|
16 |
Truman J E, Coleman M J, Pirt K R. Note on the influence of nitrogen content on the resistance to pitting corrosion of stainless steels [J]. Br. Corros. J., 1977, 12(4): 236
doi: 10.1179/000705977798318973
|
17 |
Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J]. Corros. Sci., 1995, 37(3): 467
doi: 10.1016/0010-938X(94)00148-Y
|
18 |
Park W I, Jung S M, Sasaki Y. Fabrication of ultra high nitrogen austenitic stainless steel by NH3 solution nitriding [J]. ISIJ Int., 2010, 50(11): 1546
doi: 10.2355/isijinternational.50.1546
|
19 |
Sah J, Joseph A, Jhala G, et al. On the effects of H2 and Ar on dual layer formed by plasma nitrocarburizing on austenitic stainless steels [J]. J. Mater. Eng. Perform., 2022, 31(4): 2664
doi: 10.1007/s11665-021-06380-1
|
20 |
Naeem M, Awan S, Shafiq M, et al. Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating [J]. Ceram. Int., 2022, 48(15): 21473
doi: 10.1016/j.ceramint.2022.04.115
|
21 |
Wang H L, Teeter G, Turner J A. Plasma nitrided type 349 stainless steel for polymer electrolyte membrane fuel cell bipolar plate-part I: nitrided in nitrogen plasma [J]. J. Fuel Cell Sci. Technol., 2010, 7(2): 021018
|
22 |
Li C X. Active screen plasma nitriding-an overview [J]. Surf. Eng., 2010, 26(1-2): 135
doi: 10.1179/174329409X439032
|
23 |
Zhang Z L, Bell T. Structure and corrosion resistance of plasma nitrided stainless steel [J]. Surf. Eng., 1985, 1(2): 131
doi: 10.1179/sur.1985.1.2.131
|
24 |
Willenbruch R D, Clayton C R, Oversluizen M, et al. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corros. Sci., 1990, 31: 179
doi: 10.1016/0010-938X(90)90106-F
|
25 |
Wang H L, Turner J A. Electrochemical nitridation of a stainless steel for PEMFC bipolar plates [J]. Int. J. Hydrogen Energy, 2011, 36(20): 13008
doi: 10.1016/j.ijhydene.2011.07.045
|
26 |
Tandon V, Patil A P. On the influence of cold working and electrochemical nitridation on the corrosion behaviour of 316L austenitic stainless steel in acidic environment [J]. Surf. Eng. Appl. Electrochem., 2020, 56(1): 63
doi: 10.3103/S1068375520010147
|
27 |
Lv J L, Jin H J, Liang T X. The effect of electrochemical nitridation on the corrosion resistance of the passive films formed on the 2205 duplex stainless steel [J]. Mater. Lett., 2019, 256: 126640
doi: 10.1016/j.matlet.2019.126640
|
28 |
Pugal Mani S, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J]. Energy, 2017, 133: 1050
doi: 10.1016/j.energy.2017.05.086
|
29 |
Lv J L, Liang T X, Luo H Y. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment [J]. J. Power Sources, 2015, 293: 692
doi: 10.1016/j.jpowsour.2015.06.006
|
30 |
Wang H, Turner J A. Modifying a stainless steel for PEMFC bipolar plates via electrochemical nitridation [J]. Fuel Cells, 2013, 13(5): 917
doi: 10.1002/fuce.v13.5
|
31 |
Nam N D, Jo D S, Kim J G, et al. Corrosion protection of CrN/TiN multi-coating for bipolar plate of polymer electrolyte membrane fuel cell [J]. Thin Solid Films, 2011, 519(20): 6787
doi: 10.1016/j.tsf.2011.01.207
|
32 |
Bottoli F, Jellesen M S, Christiansen T L, et al. High temperature solution-nitriding and low-temperature nitriding of AISI 316: effect on pitting potential and crevice corrosion performance [J]. Appl. Surf. Sci., 2018, 431: 24
doi: 10.1016/j.apsusc.2017.06.094
|
33 |
Ahila S, Reynders B, Grabke H J. The evaluation of the repassivation tendency of Cr-Mn and Cr-Ni steels using scratch technique [J]. Corros. Sci., 1996, 38(11): 1991
doi: 10.1016/S0010-938X(96)00092-3
|
34 |
Srinivasan A, Reynders B, Grabke H J. Localised corrosion behaviour of high and low nitrogen Cr-Mn steels [J]. Steel Res., 1995, 66(10): 439
doi: 10.1002/srin.1995.66.issue-10
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|