Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 902-910    DOI: 10.11901/1005.3093.2023.590
  研究论文 本期目录 | 过刊浏览 |
S31655奥氏体不锈钢在湿法磷酸中的腐蚀行为
张建斌1,2(), 田欢1,2, 欧阳明辉3, 郝汀4
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 兰州理工大学温州泵阀研究院 温州 325000
3 浙江宣达集团耐腐蚀特种金属材料研究院 温州 325000
4 苏州科技大学机械工程学院 苏州 215009
Corrosion Behavior of Austenitic Stainless Steel S31655 in a Simulated Wet Process Phosphoric Acid Solution
ZHANG Jianbin1,2(), TIAN Huan1,2, OUYANG Minghui3, HAO Ting4
1 State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Wenzhou Pump and Valve Research Institute of Lanzhou University of Technology, Wenzhou 325000, China
3 Zhejiang Xuanda Group Corrosion Resistant Special Metal Materials Research Institute, Wenzhou 325000, China
4 School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
引用本文:

张建斌, 田欢, 欧阳明辉, 郝汀. S31655奥氏体不锈钢在湿法磷酸中的腐蚀行为[J]. 材料研究学报, 2024, 38(12): 902-910.
Jianbin ZHANG, Huan TIAN, Minghui OUYANG, Ting HAO. Corrosion Behavior of Austenitic Stainless Steel S31655 in a Simulated Wet Process Phosphoric Acid Solution[J]. Chinese Journal of Materials Research, 2024, 38(12): 902-910.

全文: PDF(6656 KB)   HTML
摘要: 

研究了S31655奥氏体不锈钢在模拟工业湿法磷酸中不同温度下的腐蚀行为。结果表明:随着温度的升高S31655的耐蚀性能降低且存在一个临界温度(60℃),在80℃耐蚀性能显著下降,钝化膜的缺陷浓度ND提高、厚度Wsc减小、稳定性降低且其半导体性在电位高于0.7 V时由n型半导体转为p型半导体。Cr2O3、Fe(Ⅲ)等通过稳定钝化膜提高耐蚀性,$\mathrm{NH}_{4}^{+}$和NH3配体可对酸性溶液起缓释作用从而抑制腐蚀过程。临界温度的存在与钝化膜中N元素和$\mathrm{NH}_{4}^{+}$在80℃时溶解度的提高相关。温度的升高同时促进了可溶性Fe(H2PO4)2和多孔膜的生成,S31655不锈钢中Ni和N的显著富集使Cr2O3沉淀率降低,但是促进了Cr2O3的充分结晶和结构稳定,从而使其耐蚀性提高。

关键词 材料腐蚀与防护湿法磷酸腐蚀电化学钝化膜含氮奥氏体不锈钢    
Abstract

The corrosion behavior of austenitic stainless steel S31655 in a simulated industrial wet process phosphoric acid solution at 25oC, 40oC, 60oC and 80oC was investigated by means of electrochemical test and XPS technique. The results show that: with the increasing temperature, the corrosion resistance of S31655 decreases and the is a critical point at 60oC, while the corrosion resistance decreased significantly at 80oC, meanwhile, the defects concentration ND of the formed passivation film increased, its thickness Wsc decreased, and thestability deteriorated, meanwhile, the semi-conductivity of the passivation film transforms from n-type semiconductor to p-type semiconductor by potential above 0.7 V. Results of XPS spectra show that Cr2O3and Fe(Ⅲ) etc. could improve the corrosion resistance by stabilizing the passivation film, and ligands $\mathrm{NH}_{4}^{+}$ and NH3 could inhibit the corrosion process by acting as retardant to acidic solutions. The presence of a critical temperature is associated with an increase in the solubility of N and $\mathrm{NH}_{4}^{+}$ in the passivation film at 80oC. The increase in temperature simultaneously promotes the generation of soluble Fe(H2PO4)2 and porous films, and the significant enrichment of Ni and N in S31655 leads to a decrease in the precipitation rate of Cr2O3, but also promotes the full crystallization and structural stability of Cr2O3, thereby improving its corrosion resistance.

Key wordsmaterial corrosion and protection    wet process phosphoric acid corrosion    electrochemistry    passivation film    nitrogen containing austenitic stainless steel
收稿日期: 2023-12-14     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金(12075274)
通讯作者: 张建斌,副教授,jbzhangjb@hotmail.com,研究方向为结构-功能一体化材料,表面改性与修复再制造
Corresponding author: ZHANG Jianbin, Tel: 13519630320, E-mail: jbzhangjb@hotmail.com
作者简介: 张建斌,男,1972年生,博士
图1  S31655奥氏体不锈钢的微观结构
图2  S31655奥氏体不锈钢在湿法磷酸中的极化行为
SteelT / oCEcorr / VIcorr / μA·cm2Ip / μA·cm2Eb / V
S3160325-0.32351.63254.9340.729
S3165525-0.1840.6991.5091.069
40-0.1591.0771.7121.047
60-0.1532.9862.1991.023
80-0.1785.5043.2581.014
表1  S31655在不同温度在湿法磷酸中的极化参数
图3  S31655在不同温度在湿法磷酸中的I-t曲线
图4  S31655在不同温度下在湿法磷酸中恒电位极化后的腐蚀形貌
T / oCIss / mA·cm-2n
251.60 × 10-40.87
401.94 × 10-40.83
603.68 × 10-40.82
807.39 × 10-30.71
表2  S31655在不同温度下在湿法磷酸中的恒电位极化参数
图5  S31655在不同温度下在湿法磷酸中的电化学阻抗谱
T / oCL / H·cm2RS / Ω·cm2Q / Ω-1·cm-2·SnnR1 / Ω·cm2C / F·cm-2R2 / Ω·cm2
251.17 × 10-61.745.58 × 10-50.897.57 × 1033.09 × 10-42.29 × 103
401.17 × 10-61.596.36 × 10-50.912.81 × 1031.22 × 10-35.23 × 102
601.05 × 10-61.266.81 × 10-50.921.96 × 1035.55 × 10-44.94 × 102
801.11 × 10-61.157.15 × 10-50.921.19 × 1023.49 × 10-44.42 × 102
表3  S31655在不同温度下在湿法磷酸中的EIS拟合参数
T / oCαND / cm-3
2511.8 × 1090.79 × 1021
409.5 × 1090.95 × 1021
6010.2 × 1090.9 × 1021
805 × 1091.8 × 1021
表4  S31655在不同温度下在湿法磷酸中的施主密度
图6  S31655在不同温度下在湿法磷酸中的Mott-Schottky曲线
图7  S31655在湿法磷酸中钝化膜的XPS谱
图8  S31655在不同温度下在湿法磷酸中钝化膜的组成
1 Wu X B. The corrosion characteristics of wet process phosphoric acid plants and the selection of anti-corrosion materials for main equipment [J]. Sulfur Phosphorus Des. Powder Eng., 2018, (5): 9
1 吴雄标. 湿法磷酸装置的腐蚀特点及主要设备的防腐选材[J]. 硫磷设计与粉体工程, 2018, (5): 9
2 Zhang Y, Zhang X, Chen S Y, et al. The effect of phosphoric acid concentration on the corrosion resistance and passivation film characteristics of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42(5): 819
2 张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42(5): 819
3 Ouyang M H, Pan J, Cai F M, et al. Corrosion behaviour of super ferritic stainless steel 020Cr25MoCuNbTi in the waste phosphoric acid of a surface treatment process [J]. Corros. Sci., 2023, 212: 110
4 Ben Salah M, Sabot R, Refait P, et al. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures [J]. Corros. Sci., 2015, 99: 320
5 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of potential formation on the electrochemical behaviour of a highly alloyed austenitic stainless steel in contaminated phosphoric acid at different temperatures [J]. Electrochim. Acta, 2012, 80: 243
6 Li K M, Liu J, Zhang X Y, et al. Corrosion behavior of Ti6Al4V titanium alloy carburized layer in HF [J]. J. Mater. Res., 2019, 33 (7): 543
6 李坤茂, 刘 静, 张晓燕 等. Ti6Al4V钛合金渗碳层在HF中的腐蚀行为 [J]. 材料研究学报, 2019, 33(7): 543
doi: 10.11901/1005.3093.2018.650
7 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
8 Ben salah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis [J]. Corros. Sci., 2014, 86: 61
9 Rosalbino F, Angelini E, Zanicchi G, et al. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution [J]. Electrochim. Acta, 2009, 54(28): 7231
10 Lin Y H, Du R G, Hu R G, et al. Research on the correlation between corrosion resistance of stainless steel passivation films and semiconductor properties [J]. J. Phys. Chem., 2005, (7): 740
10 林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, (7): 740
11 Du C Y, Liu C, Zhang M, et al. The effect of formic acid concentration on the corrosion passivation activation transition behavior of 316L stainless steel [J]. J. Eng. Sci., 2022, 44(8): 1379
11 杜晨阳, 刘 畅, 张 铭 等. 甲酸浓度对316L不锈钢腐蚀钝化-活化转变行为的影响 [J]. 工程科学学报, 2022, 44(8): 1379
12 Li L F, Caenen P, Celis J P. Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes [J]. Corros. Sci., 2008, 50(3): 804
13 Kim J D, Pyun S I. Effects of electrolyte composition and applied potential on the repassivation kinetics of pure aluminium [J]. Electrochim. Acta, 1995, 40(12): 1863
14 Fernández Domene R M, Blasco Tamarit E, García García D M, et al. Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and confocal laser scanning microscopy [J]. Corros. Sci., 2010, 52(10): 3453
15 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51(5): 979
16 Park J J, Pyun S I, Lee W J, et al. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution [J]. Corrosion. 1999, 55(4): 380
17 Osório W R, Brito C, Peixoto L C, et al. Electrochemical behavior of Zn-rich Zn-Cu peritectic alloys affected by macrosegregation and microstructural array [J]. Electrochim. Acta, 2012, 76: 218
18 Gao J. Research on local corrosion behavior of economical nickel type stainless steel [D]. Shanghai: Fudan University, 2010
18 高 娟. 经济节镍型不锈钢局部腐蚀行为研究 [D]. 上海: 复旦大学, 2010
19 Metikoš Huković M, Pilić Z, Babić R, et al. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution [J]. Acta Biomater., 2006, 2(6): 693
20 Xin S S. Research on the corrosion behavior of 316L stainless steel in hot concentrated seawater [D]. Shanghai: Shanghai University, 2015
20 辛森森. 316L不锈钢在热浓缩海水中的腐蚀行为研究 [D]. 上海: 上海大学, 2015
21 Luo H, Gao S, Dong C, et al. Characterization of electrochemical and passive behaviour of alloy 59 in acid solution [J]. Electrochim. Acta, 2014, 135: 412
22 Prabakaran K, Rajeswari S. Electrochemical, SEM and XPS investigations on phosphoric acid treated surgical grade type 316L SS for biomedical applications [J]. J. Appl. Electrochem., 2009, 39(6): 887
23 Guo T M, Xu X J, Zhang Y W, et al. Corrosion behavior of Q345q bridge steel and Q345qNH weathering steel in simulated industrial atmosphere+deicing salt mixed media [J]. J. Mater. Res., 2020, 34(6): 434
23 郭铁明, 徐秀杰, 张延文 等. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为 [J]. 材料研究学报, 2020, 34(6): 434
doi: 10.11901/1005.3093.2019.501
24 Lei M K, Zhu X M. Role of nitrogen in pitting corrosion resistance of a high-nitrogen face-centered-cubic phase formed on austenitic stainless steel [J]. J. Electrochem. Soc., 2005, 152(8): B291
25 Gray J J, Hayes J R, Gdowski G E, et al. Rapid assessment of the influence of solution pH, anion concentration and temperature on the dissolution of alloy 22 [J]. J. Electrochem. Soc., 2006, 153: B61
[1] 崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
[2] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[3] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[4] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[5] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[8] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[9] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[10] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[11] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[12] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[13] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[14] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[15] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.