Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 911-921    DOI: 10.11901/1005.3093.2024.188
  研究论文 本期目录 | 过刊浏览 |
基于N含量调控的Ti微合金钢凝固过程中TiN析出行为研究
陈瑞洋1, 裘欣2, 丁汉林1(), 王子健1, 项重辰1
1 苏州大学沙钢钢铁学院 苏州 215137
2 苏州城市学院光学与电子信息学院 苏州 215104
Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content
CHEN Ruiyang1, QIU Xin2, DING Hanlin1(), WANG Zijian1, XIANG Chongchen1
1 School of Iron and Steel, Soochow University, Suzhou 215137, China
2 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
引用本文:

陈瑞洋, 裘欣, 丁汉林, 王子健, 项重辰. 基于N含量调控的Ti微合金钢凝固过程中TiN析出行为研究[J]. 材料研究学报, 2024, 38(12): 911-921.
Ruiyang CHEN, Xin QIU, Hanlin DING, Zijian WANG, Chongchen XIANG. Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content[J]. Chinese Journal of Materials Research, 2024, 38(12): 911-921.

全文: PDF(12971 KB)   HTML
摘要: 

通过实验观察和理论分析,研究了不同N含量Ti微合金钢凝固过程中TiN的析出行为。结果表明:降低N含量,可减少液相析出的粗大TiN夹杂的数量、体积分数并改变其形貌,同时也降低了固相析出TiN粒子的形核驱动力、粒子尺寸及体积分数。对于Ti元素含量一定的Ti微合金钢,调整N含量可有效调控钢中TiN夹杂和TiN粒子的形貌、大小和体积分数。

关键词 金属材料Ti微合金钢TiN粒子凝固偏聚析出行为    
Abstract

The precipitation behavior of TiN particles during the solidification process of Ti-microalloyed steels with varying N contents was investigated by experimental observations and theoretical analysis. The results indicate that reducing the N content leads to decrease in the number of coarse TiN inclusions precipitated from the liquid phase and changes in the morphology of TiN inclusions, as well as alterations in the driving force for the precipitation and the size of TiN particles precipitated from the solid phase during solidification. Simultaneously, the decrease in N content contributes to the decrease of the volume fraction of TiN particles precipitated from both the liquid and solid phase. It is concluded that the morphology, size and volume fraction of TiN inclusions and precipitated TiN particles within the steel may be controlled by adjusting the N content of Ti-microalloyed steels with a set Ti content.

Key wordsmetallic materials    Ti-microalloyed steel    TiN particles    solidification segregation    precipitation behavior
收稿日期: 2024-04-25     
ZTFLH:  TG142.1-3  
基金资助:国家自然科学基金(52174367)
通讯作者: 丁汉林,教授,dinghanlin@suda.edu.cn,研究方向为高性能金属材料开发及强韧化机理
Corresponding author: DING Hanlin, Tel: (0512)67165762, E-mail: dinghanlin@suda.edu.cn
作者简介: 陈瑞洋,男,1999年生,硕士生
CMnSiTiNNbAlTi/N
S10.1131.510.3270.00950.0107-0.0020.888
S20.161.340.260.01000.00480.0260.0172.083
S30.121.470.40.01100.00270.0440.0074.074
表1  实验钢的化学成分
图1  实验钢中第二相粒子的分布和尺寸
图2  钢中液相析出第二相粒子的SEM照片和EDS能谱
图3  钢中亚微米TiN粒子的分布、形貌和尺寸
图4  在不同温度下Ti含量和N含量的平衡关系
S1S2S3
Equilibrium distribution coefficient[27], k0(Ti)0.4
Equilibrium distribution coefficient[27], k0(N)0.32
Melting point of pure solvent[27], T0 / K1789
Liquidus, TL / K178817871786
Solidus, TS / K173317461750
表2  凝固过程中的参数
图5  平衡凝固过程中固/液界面处固相率与溶质浓度的关系
图6  凝固过程中Ti与N的浓度积与固相率的关系
图7  凝固过程中TiN粒子和TiN夹杂生成的示意图[30]
图8  Ti微合金钢凝固过程中生成的TiN的尺寸
图9  Ti微合金钢凝固过程中液固界面处TiN粒子瞬时析出的体积分数
S1S2S3
Solidus, TS / oC146014731477

TiN inclusion precipitation in solidified liquid phase / %

(The proportion of total precipitation)

0.00473 (28.3%)0.00091 (6.1%)0.00010 (0.9%)

TiN particles precipitation in solidified solid phase / %

(The proportion of total precipitation)

0.000980 (5.9%)0.000051 (0.3%)0

Solid phase TiN particles precipitate at 1150oC / %

(The proportion of total precipitation)

0.01099 (65.8%)0.01404 (93.6%)0.0110 (99.1%)
Total precipitation / %0.01670.01500.0111
表3  平衡条件下析出的TiN粒子的体积分数
1 Sun L, Zhang S, Song R, et al. Effect of V, Nb, and Ti microalloying on low-temperature impact fracture behavior of non-quenched and tempered forged steel [J]. Mater. Sci. Eng. A-Struct., 2023, 879: 145299
2 Thridandapani R R, Misra R D K, Mannering T, et al. The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength [J]. Mater. Sci. Eng. A-Struct., 2006, 422(1-2): 285
3 Hui Y J, Pan H, Liu K, et al. Strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel [J]. Acta Metall. Sin., 2017, 53(8): 937
doi: 10.11900/0412.1961.2017.00038
3 惠亚军, 潘 辉, 刘 锟 等. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制 [J]. 金属学报, 2017, 53(8): 937
doi: 10.11900/0412.1961.2017.00038
4 Wang Z, Mao X, Yang Z, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel [J]. Mater. Sci. Eng. A-Struct., 2011, 529: 459
5 Capurro C, Cicutti C. Analysis of titanium nitrides precipitated during medium carbon steels solidification [J]. J. Mater. Res. Technol., 2018, 7(3): 342
6 Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels [J]. Mater. Charact., 2022, 188: 111919
7 Liu G, Liao T, Wang S, et al. Revealing the precipitation kinetics of multi-stage and multi-scale Ti-bearing precipitation in a 460 MPa grade HSLA steel [J]. Mater. Sci. Eng. A-Struct., 2024, 890: 145941
8 Wu S X, Chen D F, Wang Q Z, et al. Thermodynamic study on precipitation of TiN and TiC in continuous casting of titanium microalloyed steel [J]. Contin. Cast., 2019, 44(1): 28
8 吴石新, 陈登福, 汪勤政 等. 钛微合金钢连铸中TiN与TiC析出热力学研究 [J]. 连铸, 2019, 44(1): 28
9 Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels [J]. ISIJ Int., 1999, 39(9): 930
10 Du J L, Strangwood M, Davis C L. Effect of TiN particles and grain size on the charpy impact transition temperature in steels [J]. J. Mater. Sci. Technol., 2012, 28(10): 878
11 Xing L, Guo J, Li X, et al. Control of TiN precipitation behavior in titanium-containing micro-alloyed steel [J]. Mater. Today Commun., 2020, 25: 101292
12 Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size [J]. Acta Mater., 2006, 54(4): 1053
13 Duan H, Zhang Y, Ren Y, et al. Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab [J]. J. Iron Steel Res. Int., 2018, 26(9): 962
14 Jin Y L, Du S L. Precipitation behaviour and control of TiN inclusions in rail steels [J]. Ironmaking Steelmaking, 2016, 45(3): 224
15 Guo S, Zhu H Y, Han Y. Research progress on influence of inclusion on ductility and toughness of steel [J]. J. Iron Steel Res., 2022, 34(8): 713
doi: 10.13228/j.boyuan.issn1001-0963.20210279
15 郭 帅, 朱航宇, 韩 赟 等. 夹杂物对钢塑性和韧性的影响研究进展 [J]. 钢铁研究学报, 2022, 34(8): 713
16 Li N, Xue Z L, Wang L. Precipitation mechanism of heterogeneous nucleation of TiN composite inclusions in SWRH 92A tire cord steel [J]. J. Iron Steel Res., 2022, 34(10): 1118
doi: 10.13228/j.boyuan.issn1001-0963.20210377
16 李 宁, 薛正良, 王 璐. SWRH 92A帘线钢中异相形核TiN复合夹杂析出机制 [J]. 钢铁研究学报, 2022, 34(10): 1118
17 Tian Q, Li J, Wu X, et al. Growth mechanism of MnS/Fe on TiN surface: First principle investigation [J]. J. Alloys Compd., 2020, 844: 155831
18 Peng Z, Li L, Gao J, et al. Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment [J]. Mater. Sci. Eng. A-Struct., 2016, 657: 413
19 Li N, Wang L, Li C Z, et al. Precipitation thermodynamics and formation mechanism of Ti inclusions in hypereuteetoid tire cord steel [J]. J. Iron Steel Res., 2022, 34(3): 200
19 李 宁, 王 璐, 李承志 等. 过共析帘线钢中Ti夹杂的析出热力学与形成机制 [J]. 钢铁研究学报, 2022, 34(3): 200
20 Shang T, Wang W, Kang J, et al. Precipitation behavior of TiN in solidification of 20CrMnTi under continuous casting conditions [J]. J. Mater. Res. Technol., 2023, 24: 3608
21 Gui L, Long M, Zhang H, et al. Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model [J]. J. Mater. Res. Technol., 2020, 9(3): 5499
22 Matsuda S, Okumura N. Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels [J]. Trans. Iron Steel Inst. Jpn., 1978, 18(4): 198
23 Narita K. Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel [J]. Trans. Iron Steel Inst. Jpn., 1975, 15(3): 145
24 Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion [J]. Metall. Mater. Trans. A, 1981, 12: 965
25 Sheng J, Wei J F, Meng Y H, et al. Thermodynamical analysis of TiN precipitation in 21Cr ultra pure ferrite stainless steel [J]. J. Lanzhou Univ. Technol., 2023, 49(5): 1
25 盛 捷, 魏佳富, 孟亚惠 等. 21Cr超纯铁素体不锈钢TiN析出的热动力学研究 [J]. 兰州理工大学学报, 2023, 49(5): 1
26 Ma Z, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel [J]. ISIJ Int., 1998, 38(1): 46
27 Fu J, Qiu W, Nie Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel [J]. J. Alloys Compd., 2017, 699: 938
28 Zhang Z F, Xing L D, Wang M, et al. Analysis of precipitation behavior of TiN in low carbon micro alloyed steel [J]. Contin. Cast., 2020, (5): 38
28 张泽峰, 邢立东, 王 敏 等. 低碳微合金钢中TiN的析出行为分析 [J]. 连铸, 2020, (5): 38
doi: 10.13228/j.boyuan.issn1005-4006.20200052
29 Zhang X Y, Peng J, Peng J H. Effect of nitrogen content on the thermodynamics of inclusion precipitation in rare-earth steel [J] Chin. Rare Earth, 2022, 43(6): 1
29 张肖遥, 彭 军, 彭继华. 氮含量对稀土钢中夹杂析出热力学的探究 [J]. 稀土, 2022, 43(6): 1
30 Wang Y, Yang J, Bao Y. Characteristics of BN precipitation and growth during solidification of BN free-machining steel [J]. Metall. Mater. Trans. B, 2014, 45(6): 2269
31 Yong Q L. The Second Phase in Iron and Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 26
31 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 26
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.