Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 129-135    DOI: 10.11901/1005.3093.2021.566
  研究论文 本期目录 | 过刊浏览 |
钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能
罗昱, 陈秋云, 薛丽红(), 张五星, 严有为
华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074
Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance
LUO Yu, CHEN Qiuyun, XUE Lihong(), ZHANG Wuxing, YAN Youwei
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong Universtiy of Scienc and Technology, Wuhan 430074, China
引用本文:

罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
Yu LUO, Qiuyun CHEN, Lihong XUE, Wuxing ZHANG, Youwei YAN. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. Chinese Journal of Materials Research, 2023, 37(2): 129-135.

全文: PDF(5955 KB)   HTML
摘要: 

用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。

关键词 复合材料C@Na3V2(PO43超声辅助溶液燃烧钠离子电池    
Abstract

Double-layer carbon coated Na3V2(PO4)3 (NVP), as cathode material for sodium-ion batteries, was successfully synthesized by ultrasonic-assisted solution combustion synthesis, and its structure, morphology and electrochemical properties were investigated. The results show that the surface of NVP particles is firstly coated with an amorphous hard carbon layer, subsequently with a graphene layer. When the graphene content is 5.0%, the carbon-coated NVP composite exhibits excellent electrochemical properties. It delivers an initial discharge capacity of 117 mAh·g–1 at 1 C, and retains 79% of the initial capacity after 300 cycles. Even at 10 C, it still maintains a discharge capacity as high as 100 mAh·g–1. The significant improvement of the sodium storage performance can be ascribed to the special structure of homogeneous double-layer carbon coating, which can act as a 3-dimentional network as electron pathway.

Key wordscomposite    C@Na3V2(PO4)3    ultrasonic-assisted solution combustion    Na-ion battery
收稿日期: 2021-09-28     
ZTFLH:  TM911  
基金资助:国家重点研发计划(2016YFB0100302)
作者简介: 罗昱,男,1990年生,博士生
图1  碳包覆NVP的XRD谱
图2  碳包覆NVP的拉曼谱
图3  石墨烯纳米片的TEM照片
图4  GO添加量不同的碳包覆NVP的SEM照片
图5  GO添加量不同的NVP的HRTEM图
图6  GO添加量不同的NVP的N2吸/脱附等温曲线(内嵌为孔径分布图)
图7  GO添加量不同的NVP的电化学阻抗奈奎斯特图
图8  GO添加量不同的NVP的电化学性能
1 Saravanan K, Mason C W, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries [J]. Adv. Energy Mater., 2013, 3(4): 444
doi: 10.1002/aenm.201200803
2 Song W X, Ji X B, Wu Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 [J]. J. Mater. Chem., 2014, 2A(15) : 5358
3 Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries [J]. Adv. Energy Mater., 2013, 3(2): 156
doi: 10.1002/aenm.201200558
4 Zhang B W, Ma K X, Lv X, et al. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives [J]. J. Alloys Compd., 2021, 867: 159060
doi: 10.1016/j.jallcom.2021.159060
5 Wang E H, Chen M Z, Liu X H, et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode [J]. Small, 2018, 3: 1800169
6 Cao X X, Pan A Q, Yin B, et al. Nanoflake-constructed Porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications [J]. Nano Energy, 2019, 60: 312
doi: 10.1016/j.nanoen.2019.03.066
7 Zhang J X, Fang Y J, Xiao L F, et al. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9: 7177
doi: 10.1021/acsami.6b16000
8 Xu J Y, Gu E L, Zhang Z Z, et al. Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance [J]. J. Colloid Interface Sci., 2020, 567: 84
doi: 10.1016/j.jcis.2020.01.121
9 Wang H, Jiang D L, Zhang Y, et al. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries [J]. Electrochim. Acta, 2015, 155: 23
doi: 10.1016/j.electacta.2014.12.160
10 Väli R, Aruväli J, Härmas M, et al. Glycine-nitrate process for synthesis of Na3V2(PO4)3 cathode material and optimization of glucose-derived hard carbon anode material for characterization in full cells [J]. Batteries, 2019, 5(3): 56
doi: 10.3390/batteries5030056
11 Salehi A H, Masoudpanah S M, Hasheminiasari M, et al. A solution synthesis of Na3V2(PO4)3 cathode for sodium storage by using CTAB additive [J]. Solid State Ion., 2020, 347: 115269
doi: 10.1016/j.ssi.2020.115269
12 Li N L, Tong Y W, Yi D W, et al. 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries [J]. Ceram. Int., 2020, 46(17): 27493
doi: 10.1016/j.ceramint.2020.07.238
13 Sancheti S V, Gogate P R. A review of engineering aspects of intensification of chemical synthesis using ultrasound [J]. Ultrason. Sonochem., 2017, 36: 527
doi: S1350-4177(16)30279-6 pmid: 27567541
14 Harifi T, Montazer M. A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates [J]. Ultrason. Sonochem., 2015, 23: 1
doi: 10.1016/j.ultsonch.2014.08.022 pmid: 25216894
15 Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
15 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
16 Suslick K S. Sonochemistry [J]. Science, 1990, 247(4949): 1439
doi: 10.1126/science.247.4949.1439 pmid: 17791211
17 Chen Q Y, Liu Q, Chu X C, et al. Ultrasonic-assisted solution combustion synthesis of Porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance [J]. J. Nanopart. Res., 2017, 19: 146
doi: 10.1007/s11051-017-3828-4
18 Li S, Dong Y F, Xu L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries [J]. Adv. Mater., 2014, 26(21): 3545
doi: 10.1002/adma.201305522
19 Fang Y J, Xiao L F, Ai X P, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries [J]. Adv. Mater., 2015, 27(39): 5895
doi: 10.1002/adma.201502018
20 Zhu C B, Kopold P, Van Aken P A, et al. High power-high energy sodium battery based on threefold interpenetrating network [J]. Adv. Mater., 2016, 28(12): 2409
doi: 10.1002/adma.201505943
21 Xu Y N, Wei Q L, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode [J]. Adv. Energy Mater., 2016, 6(14): 1600389
doi: 10.1002/aenm.201600389
22 Rui X H, Sun W P, Wu C, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network [J]. Adv. Mater., 2015, 27(42): 6670
doi: 10.1002/adma.201502864
23 Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339
doi: 10.1021/ja01539a017
24 Purushothaman K K, Saravanakumar B, Babu I M, et al. Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors [J]. RSC Adv., 2014, 4(45): 23485
doi: 10.1039/c4ra02107j
25 Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J. Mater. Chem., 2011, 21(11): 3634
doi: 10.1039/c0jm03827j
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.