|
|
钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能 |
罗昱, 陈秋云, 薛丽红( ), 张五星, 严有为 |
华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074 |
|
Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance |
LUO Yu, CHEN Qiuyun, XUE Lihong( ), ZHANG Wuxing, YAN Youwei |
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong Universtiy of Scienc and Technology, Wuhan 430074, China |
引用本文:
罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
Yu LUO,
Qiuyun CHEN,
Lihong XUE,
Wuxing ZHANG,
Youwei YAN.
Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. Chinese Journal of Materials Research, 2023, 37(2): 129-135.
1 |
Saravanan K, Mason C W, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries [J]. Adv. Energy Mater., 2013, 3(4): 444
doi: 10.1002/aenm.201200803
|
2 |
Song W X, Ji X B, Wu Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 [J]. J. Mater. Chem., 2014, 2A(15) : 5358
|
3 |
Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries [J]. Adv. Energy Mater., 2013, 3(2): 156
doi: 10.1002/aenm.201200558
|
4 |
Zhang B W, Ma K X, Lv X, et al. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives [J]. J. Alloys Compd., 2021, 867: 159060
doi: 10.1016/j.jallcom.2021.159060
|
5 |
Wang E H, Chen M Z, Liu X H, et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode [J]. Small, 2018, 3: 1800169
|
6 |
Cao X X, Pan A Q, Yin B, et al. Nanoflake-constructed Porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications [J]. Nano Energy, 2019, 60: 312
doi: 10.1016/j.nanoen.2019.03.066
|
7 |
Zhang J X, Fang Y J, Xiao L F, et al. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9: 7177
doi: 10.1021/acsami.6b16000
|
8 |
Xu J Y, Gu E L, Zhang Z Z, et al. Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance [J]. J. Colloid Interface Sci., 2020, 567: 84
doi: 10.1016/j.jcis.2020.01.121
|
9 |
Wang H, Jiang D L, Zhang Y, et al. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries [J]. Electrochim. Acta, 2015, 155: 23
doi: 10.1016/j.electacta.2014.12.160
|
10 |
Väli R, Aruväli J, Härmas M, et al. Glycine-nitrate process for synthesis of Na3V2(PO4)3 cathode material and optimization of glucose-derived hard carbon anode material for characterization in full cells [J]. Batteries, 2019, 5(3): 56
doi: 10.3390/batteries5030056
|
11 |
Salehi A H, Masoudpanah S M, Hasheminiasari M, et al. A solution synthesis of Na3V2(PO4)3 cathode for sodium storage by using CTAB additive [J]. Solid State Ion., 2020, 347: 115269
doi: 10.1016/j.ssi.2020.115269
|
12 |
Li N L, Tong Y W, Yi D W, et al. 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries [J]. Ceram. Int., 2020, 46(17): 27493
doi: 10.1016/j.ceramint.2020.07.238
|
13 |
Sancheti S V, Gogate P R. A review of engineering aspects of intensification of chemical synthesis using ultrasound [J]. Ultrason. Sonochem., 2017, 36: 527
doi: S1350-4177(16)30279-6
pmid: 27567541
|
14 |
Harifi T, Montazer M. A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates [J]. Ultrason. Sonochem., 2015, 23: 1
doi: 10.1016/j.ultsonch.2014.08.022
pmid: 25216894
|
15 |
Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
|
15 |
阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
|
16 |
Suslick K S. Sonochemistry [J]. Science, 1990, 247(4949): 1439
doi: 10.1126/science.247.4949.1439
pmid: 17791211
|
17 |
Chen Q Y, Liu Q, Chu X C, et al. Ultrasonic-assisted solution combustion synthesis of Porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance [J]. J. Nanopart. Res., 2017, 19: 146
doi: 10.1007/s11051-017-3828-4
|
18 |
Li S, Dong Y F, Xu L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries [J]. Adv. Mater., 2014, 26(21): 3545
doi: 10.1002/adma.201305522
|
19 |
Fang Y J, Xiao L F, Ai X P, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries [J]. Adv. Mater., 2015, 27(39): 5895
doi: 10.1002/adma.201502018
|
20 |
Zhu C B, Kopold P, Van Aken P A, et al. High power-high energy sodium battery based on threefold interpenetrating network [J]. Adv. Mater., 2016, 28(12): 2409
doi: 10.1002/adma.201505943
|
21 |
Xu Y N, Wei Q L, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode [J]. Adv. Energy Mater., 2016, 6(14): 1600389
doi: 10.1002/aenm.201600389
|
22 |
Rui X H, Sun W P, Wu C, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network [J]. Adv. Mater., 2015, 27(42): 6670
doi: 10.1002/adma.201502864
|
23 |
Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339
doi: 10.1021/ja01539a017
|
24 |
Purushothaman K K, Saravanakumar B, Babu I M, et al. Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors [J]. RSC Adv., 2014, 4(45): 23485
doi: 10.1039/c4ra02107j
|
25 |
Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J. Mater. Chem., 2011, 21(11): 3634
doi: 10.1039/c0jm03827j
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|