|
|
FeCo/SnO2 复合纳米纤维的制备及其吸波性能 |
张开银1, 王秋玲1, 向军2( ) |
1.武夷学院机电工程学院 武夷山 354300 2.江苏科技大学理学院 镇江 212100 |
|
Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers |
ZHANG Kaiyin1, WANG Qiuling1, XIANG Jun2( ) |
1.School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China 2.School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
引用本文:
张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
Kaiyin ZHANG,
Qiuling WANG,
Jun XIANG.
Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. Chinese Journal of Materials Research, 2023, 37(2): 102-110.
1 |
Green M, Chen X. Recent progress of nanomaterials for microwave absorption [J]. J. Materiomics. 2019, 5: 503
doi: 10.1016/j.jmat.2019.07.003
|
2 |
Kong J, Gao H, Li Y, et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials [J]. Mater. Rep., 2020, 34(5): 09055
|
2 |
孔 静, 高 鸿, 李 岩 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展 [J]. 材料导报, 2020, 34(5): 09055
|
3 |
Lv T, Zhang C W, Liu J, et al. Research progress in metamaterial absorber [J]. Acta. Mater. Compos. Sin., 2021, 38(1): 25
|
3 |
吕 通, 张辰威, 刘 甲 等. 吸波材料研究进展 [J]. 复合材料学报, 2021, 38(1): 25
|
4 |
Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res., 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
|
4 |
刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
|
5 |
Chen Z W, Fan X M, Huang X X, et al. Research progress and prospestion on high-temperature wave-absorbing ceramic materials [J]. Adv. Ceram., 2020, 41(1-2): 1
|
5 |
陈政伟, 范晓孟, 黄小萧 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(1-2): 1
|
6 |
Xiang J, Li J L, Zhang X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers [J]. J.Mater.Chem.A., 2014, 2: 16905
|
7 |
Quan B, Liang X H, Xu G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation [J]. New J. Chem., 2017, 41: 1259
doi: 10.1039/C6NJ03052A
|
8 |
Zhu X Y, Qiu H F, Chen P. Preparation and electromagnetic wave absorbing properties of composites of cobalt coated graphitic carbon nitride Co@CNTs [J]. Chin. J. Mater. Res., 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
|
8 |
朱晓宇, 邱红芳, 陈 平. Co@CNT复合电磁波吸收剂的制备及其吸波性能 [J]. 材料研究学报, 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
|
9 |
Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
|
9 |
褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
|
10 |
Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloy. Comp., 2019, 785: 765
doi: 10.1016/j.jallcom.2019.01.271
|
11 |
Liu D W, Qiang R, Du Y C, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption [J]. J. Colloid. Interf. Sci., 2018, 514: 10
doi: S0021-9797(17)31403-0
pmid: 29227802
|
12 |
Zhou C H, Wu C, Yan M. A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 370: 988
doi: 10.1016/j.cej.2019.03.295
|
13 |
Yang B, Wu Y, Li X P, et al. Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers [J]. Mater. Design., 2017, 136: 13
|
14 |
Song W Z. Design, preparation and microwave absorbing properties of FeCo/ZnO Composites [D]. Zhengzhou: Zhengzhou University of Aeronautics, 2019
|
14 |
宋文正. FeCo/ZnO复合材料的设计制备及吸波性能研究 [D]. 郑州: 郑州航空工业管理学院, 2019
|
15 |
Xu Z J, Guo J, Du B S, et al. Influence of microstructure on waves resonance of FeCo/TiO2 nanocomposites [J]. J. Funct. Mater., 2016, 47(): 148
|
15 |
徐志洁, 郭 杰, 杜宝盛 等. 微观结构对FeCo/TiO2纳米复合材料微波共振的影响 [J]. 功能材料, 2016, 47(): 148
|
16 |
Zhou X W, Wang Z G, Wang Q, et al. Preparation and microwave absorbing properties of graphene/SnO2 nanofiber hybrids [J]. 2019, Met. Funct. Mater., 2019, 26(2): 11
|
16 |
周小文, 王志国, 王 倩 等. 石墨烯/SnO2 纳米纤维复合材料的制备及吸波性能的研究 [J]. 金属功能材料, 2019, 26(2): 11
|
17 |
Bokuiaeva A O, Vorokh A S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder [J]. J. Phys.: Conf. Ser., 2019, 1410: 012057
|
18 |
Li D W, Du Y C, Li Z N, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties [J]. J. Mater. Chem. C., 2018, 6: 9615
doi: 10.1039/C8TC02931H
|
19 |
Zhang X, Rao Y, Guo J, et al. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption[J]. Carbon, 2016, 96: 972
doi: 10.1016/j.carbon.2015.09.087
|
20 |
Ma J, Li J G, Ni X, et al. Microwave resonance in Fe/SiO2 nanocomposite [J]. Appl. Phys. Lett., 2009, 95:102505
doi: 10.1063/1.3224883
|
21 |
Wang H, Daiy Y, Gong W J, et al. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances [J]. Appl. Phys. Lett., 2013, 102: 223113
doi: 10.1063/1.4809675
|
22 |
Aharoni A. Exchange resonance modes in a ferromagnetic sphere [J]. J. Appl. Phys., 1991, 69: 7762
doi: 10.1063/1.347502
|
23 |
Green M, Tran T V, Chen X. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery [J]. Adv. Mater. Interfaces., 2020, 7(18): 2000658
doi: 10.1002/admi.202000658
|
24 |
Huang X G, Zhang J, Lai M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers [J]. J. Alloy. Compd., 2015, 627: 367
doi: 10.1016/j.jallcom.2014.11.235
|
25 |
Lv H P, Wu C, Qin F X, et al. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mat. Sci. Tech., 2021, 90: 1
|
26 |
Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
doi: 10.1039/C4TA06053A
|
27 |
Yuan Y, Liu C, Jiang J T, et al. Study on properties of Co/SiO2 composite particles of micron scale [J]. Aerospace Shanghai, 2018, 35(1): 75
|
27 |
袁 勇, 刘 超, 姜建堂, 甄 良. 微米级Co/SiO2复合颗粒性能研究 [J]. 上海航天, 2018, 35(1): 75
|
28 |
Liu Q, Dai J X, Hu F, et al. Core-shell structured Fe/ZnO composite with superior electromagnetic wave absorption performance [J]. Ceram. Inter., 2021, 47: 14506
doi: 10.1016/j.ceramint.2021.02.030
|
29 |
Zhao B, Guo X, Zhao W, et al. Yolk-shell Ni@ SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 28917
doi: 10.1021/acsami.6b10886
|
30 |
Chen P A, Wang X, Zhu Y L, et al. Antioxidation and microwave absorption of flattened FeCo@TiO2@Fe3O4 core-shell composites [J]. J Chin Ceram Soc, 2021, 49(10): 2203
|
30 |
陈平安, 王 昕, 朱颖丽. 扁平FeCo@TiO2@Fe3O4核壳结构抗氧化和微波吸收性能 [J]. 硅酸盐学报, 2021, 49(10): 2203
|
31 |
Guan G G, Gao G J, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption [J]. ACS Appl. Nano Mater., 2020, 3: 8424
doi: 10.1021/acsanm.0c01855
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|