Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 552-560    DOI: 10.11901/1005.3093.2021.431
  研究论文 本期目录 | 过刊浏览 |
rGO/PANI/MnO2 三元复合材料的制备和电化学性能
刘艳云(), 刘宇涛, 李万喜
晋中学院材料科学与工程系 晋中 030619
Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites
LIU Yanyun(), LIU Yutao, LI Wanxi
Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
引用本文:

刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
Yanyun LIU, Yutao LIU, Wanxi LI. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. Chinese Journal of Materials Research, 2022, 36(7): 552-560.

全文: PDF(6970 KB)   HTML
摘要: 

用水热合成法和冻干操作制备石墨烯/聚苯胺/二氧化锰三元复合材料(rGO/PANI/MnO2),使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对其进行了表征。结果表明,用这种简单高效的方法制备的复合材料,具有相互交联的网络状结构和自支撑特性。在反应过程中MnO2与聚苯胺形成不规则的块状结构,共沉积在石墨烯自组装形成的网络片层上。这种复合材料具有良好的电容性能,比电容为388 F·g-1(0.5 A·g-1),优于单纯的石墨烯(rGO,234 F·g-1)和聚苯胺电极(PANI,176 F·g-1)。使用这种复合材料作为正极、rGO作为负极组装的一种不对称超级电容器,能在0~1.6 V范围内可逆循环,功率密度为17.48 W·kg-1时最大能量密度为13.5 Wh·kg-1

关键词 复合材料石墨烯水热法电化学性能    
Abstract

Graphene/polyaniline/manganese dioxide ternary composites (rGO/PANI/MnO2) were prepared by hydrothermal method, followed by freeze-dried in vacuum treatment in this paper. The composites prepared by this simple and efficient method had self-supporting properties. The composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that the prepared ternary composites had an interconnected network structure. During the reaction MnO2 and polyaniline formed an irregular block structure and co-deposited on the network layer formed by graphene self-assembly. The composite electrode showed good capacitive properties, with a specific capacitance of 388 F·g-1 (0.5 A·g-1), which was better than that of graphene (rGO, 234 F·g-1) and polyaniline (PANI, 176 F·g-1). In addition, an asymmetric supercapacitor was assembled using the composite as the positive electrode and rGO as the negative electrode. The asymmetric capacitor could be reversibly cycled in the range of 0~1.6 V. When the power density was 17.48 W·kg-1, the maximum energy density could reach 13.5 Wh·kg-1.

Key wordscomposite    graphene    hydrothermal method    electrochemical properties
收稿日期: 2021-08-13     
ZTFLH:  TB383  
基金资助:山西省高校科技创新项目(2020L0576);山西省“1331工程”重点创新团队(PY201817);晋中学院“1331工程”重点创新团队(jzxycxtd2019005);轻质材料改性应用协同创新中心(jzxyxtcxzx202103)
作者简介: 刘艳云,女,1984年生,博士
图1  三元复合材料和GO与rGO的 XRD 谱
图2  rGO/PANI/MnO2-3三元复合材料的XPS谱
图3  rGO/PANI/MnO2-3的SEM照片
图4  rGO、PANI与rGO/PANI/MnO2-3在扫速为2 mV/s下的CV曲线,rGO、PANI和rGO/PANI/MnO2-3在电流密度为0.2 A·g-1时的CP曲线以及rGO、PANI与rGO/PANI/MnO2-3的EIS图(插图表示高频区域的曲线)
图5  三种复合材料在扫速为2 mV/s下的CV曲线,rGO/PANI/MnO2-3复合材料在不同扫描速率下的CV曲线和扫速为5 mV/s下的电容控制贡献以及 rGO/PANI/MnO2-3复合材料在不同扫速下的电容控制与扩散控制贡献率
图6  三种复合材料在电流密度为0.2 A·g-1时的CP曲线,rGO/PANI/MnO2-3复合材料在不同电流密度下的CP曲线,rGO/PANI/MnO2-3复合材料Ce与电流密度的关系以及三种复合材料的EIS图
图7  不对称超级电容器在扫速为10 mV/s时不同电位窗口的CV曲线,不同扫速的CV曲线,1 A·g-1时不同电位窗口下的CP曲线,在不同电流密度下的CP曲线,能量密度与功率密度的关系以及容量保留值与循环次数的关系
1 Li H X, Lang J W, Lei S L, et al. A high-performance sodium-ion hybrid capacitor constructed by metalorganic framework-derived anode and cathode materials [J]. Adv. Funct. Mater., 2018, 28: 1800757
doi: 10.1002/adfm.201800757
2 Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474: 147
doi: 10.1016/j.apsusc.2018.04.057
3 Lian C, Janssen M, Liu H R, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging [J]. Phys. Rev. Lett., 2020, 124: 076001
4 Chao D, Liang P, Chen Z, et al. Pseudocapacitive Na-ion storage boosts high-rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays [J]. ACS Nano, 2016, 10: 10211
doi: 10.1021/acsnano.6b05566
5 Li A J, Chuan X Y, Huang D B, et al. KOH activation of diatomite-templated carbon and its electrochemical property in supercapacitor [J]. Chin. J. Mater. Res., 2017, 31: 321
5 李爱军, 传秀云, 黄杜斌 等. KOH活化硅藻土模板炭及其电化学性能研究 [J]. 材料研究学报, 2017, 31: 321
doi: 10.11901/1005.3093.2016.366
6 Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324: 1530
doi: 10.1126/science.1158877 pmid: 19541989
7 El-Kady M F, Strong V, Dubin S, et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335: 1326
doi: 10.1126/science.1216744 pmid: 22422977
8 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332: 1537
doi: 10.1126/science.1200770
9 Shaikh S F, Shaikh F F M, Shaikh A V, et al. Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application [J]. J. Phys. Chem. Solid., 2021, 149: 109774
doi: 10.1016/j.jpcs.2020.109774
10 Zhao J, Zhu B, Yang G, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors [J]. J. Phys. Chem. Solid., 2021, 150: 109856
doi: 10.1016/j.jpcs.2020.109856
11 Kakaei K, Khodadoost S, Gholipour M, et al. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor [J]. J. Phys. Chem. Solids, 2021, 148: 109753
doi: 10.1016/j.jpcs.2020.109753
12 Zhu S Z, Tang G X, Wang J, et al. Preparation and capacitance properties of polyaniline/carbon microcoil composites [J]. Chin. J. Mater. Res., 2016, 30: 186
12 朱士泽, 唐国霞, 王 健 等. 聚苯胺/碳螺旋纤维复合材料的合成及其电容特性研究 [J], 材料研究学报, 2016, 30: 186
doi: 10.11901/1005.3093.2015.361
13 Pal R, Goyal S L, Rawal I, High-performance solid-state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes [J]. J. Polym. Res., 2020, 27: 179
doi: 10.1007/s10965-020-02144-y
14 Ge M, Hao H, Lv Q, et al. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor [J]. Electrochim. Acta, 2020, 330: 135236
doi: 10.1016/j.electacta.2019.135236
15 Pal R, Goyal S L, Rawal I, Transition of charge transport phenomena from 3D to 1D hopping at low temperatures in polyaniline/graphene composites[J]. J. Appl. Phys., 2020, 128: 175108
doi: 10.1063/5.0020745
16 Viswanathan A, Shetty A N, Effect of dopants on the energy storage performance of reduced graphene oxide/polyaniline nanocomposite[J]. Electrochim. Acta, 2019, 327: 135026
doi: 10.1016/j.electacta.2019.135026
17 Li J, Xiao D, Ren Y, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials [J]. Electrochim. Acta, 2019, 300: 193
doi: 10.1016/j.electacta.2019.01.089
18 Ahirrao D J, Mohanapriya K, Wilson H M, et al. Solar reduced porous graphene incorporated within polyaniline network for high-performance supercapacitor electrode [J]. Appl. Surf. Sci., 2020, 510: 145485
doi: 10.1016/j.apsusc.2020.145485
19 Yu H, Ge X, Bulin C, et al. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application [J]. Electrochim. Acta, 2017, 253: 239
doi: 10.1016/j.electacta.2017.09.071
20 Li J, Xie H, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors [J]. J. Power Sources, 2011, 196: 10775
doi: 10.1016/j.jpowsour.2011.08.105
21 Xu Y, Schwab M G, Strudwick A J, et al. Screen printable thin film supercapacitor device utilizing graphene/polyaniline inks [J]. Adv. Energy Mater., 2013, 3: 1035
doi: 10.1002/aenm.201300184
22 Song N, Wang W, Wu Y, et al. Fabrication of highly ordered polyaniline nanocore on pristine graphene for high-performance supercapacitor electrodes [J]. J. Phys. Chem. Solid., 2018, 115: 148
doi: 10.1016/j.jpcs.2017.12.022
23 Liu L, Lang J W, Zhang P, et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte [J]. ACS Appl. Mater. Interfaces, 2016, 8: 9335
doi: 10.1021/acsami.6b00225
24 Chauhan N P S, Mozafari M, Chundawat N S, et al. High-performance supercapacitors based on polyaniline-graphene nanocomposites: some approaches, challenges and opportunities [J]. J. Industrial Eng. Chem., 2016, 36: 13
doi: 10.1016/j.jiec.2016.03.003
25 Zhang J M, Zhang Y, Yuan J, et al. High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@PANI for electrochemical capacitors [J]. Chem. Phys., 2019, 526: 110461
doi: 10.1016/j.chemphys.2019.110461
26 Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO 2 electrode material [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 17438
doi: 10.1007/s10854-018-9843-0
27 Liu Y Y, Ma L, Zhang D, et al. A simple route to prepare a Cu2O-CuO-GN nanohybrid for high-performance electrode materials [J]. RSC Advances, 2017, 7: 12027
doi: 10.1039/C6RA26535A
28 Wang G X, Tang Q Q, Bao H, et al. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance [J]. J. Power Sources, 2013, 241: 231
doi: 10.1016/j.jpowsour.2013.04.122
29 Peng H R, Lv S S, Li G C. Preparation and characterization of graphene/SnO2/polyaniline nano-composites [J]. J Qingdao Tech. Univ. 2011, 32: 6
29 彭红瑞, 吕莎莎, 李桂村. 石墨烯/SnO2/聚苯胺纳米复合材料的制备与表征 [J]. 青岛理工大学学报, 2011, 32: 6
30 Liu Z, Chen W L, Fan Xin, Preparation of 3D MnO2/polyaniline/graphene hybrid material via interfacial polymerization as high-performance supercapacitor electrode [J]. Chin. J. Chem., 2016, 34: 839
doi: 10.1002/cjoc.201600217
31 Fu S N, Ma L, Gan M Y, 3D reduced graphene oxide/MnO2/polyaniline composite for high-performance supercapacitor [J]. J Mater Sci: Mater Electron, 2017, 28: 3621
doi: 10.1007/s10854-016-5964-5
32 Chigane M, Ishikawa M, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J]. J. Electrochem. Soc., 2000, 147: 2246
doi: 10.1149/1.1393515
33 Jayaramulu K., Horn M., Schneemann A., et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
doi: 10.1002/adma.202004560
34 Brezesinski T., Wang J., Tolbert S. H., et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612 pmid: 20062048
35 Shen K. X., Chen H. D., Qin H. Q., et al. Construct pseudo-capacitance of a fexible 3D-entangled carbon nanofber flm as freestanding anode for dual-ion full batteries [J]. J Mater Sci: Mater Electron, 2020, 31: 10962
doi: 10.1007/s10854-020-03587-1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.