|
|
rGO/PANI/MnO2 三元复合材料的制备和电化学性能 |
刘艳云( ), 刘宇涛, 李万喜 |
晋中学院材料科学与工程系 晋中 030619 |
|
Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites |
LIU Yanyun( ), LIU Yutao, LI Wanxi |
Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China |
引用本文:
刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
Yanyun LIU,
Yutao LIU,
Wanxi LI.
Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. Chinese Journal of Materials Research, 2022, 36(7): 552-560.
1 |
Li H X, Lang J W, Lei S L, et al. A high-performance sodium-ion hybrid capacitor constructed by metalorganic framework-derived anode and cathode materials [J]. Adv. Funct. Mater., 2018, 28: 1800757
doi: 10.1002/adfm.201800757
|
2 |
Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474: 147
doi: 10.1016/j.apsusc.2018.04.057
|
3 |
Lian C, Janssen M, Liu H R, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging [J]. Phys. Rev. Lett., 2020, 124: 076001
|
4 |
Chao D, Liang P, Chen Z, et al. Pseudocapacitive Na-ion storage boosts high-rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays [J]. ACS Nano, 2016, 10: 10211
doi: 10.1021/acsnano.6b05566
|
5 |
Li A J, Chuan X Y, Huang D B, et al. KOH activation of diatomite-templated carbon and its electrochemical property in supercapacitor [J]. Chin. J. Mater. Res., 2017, 31: 321
|
5 |
李爱军, 传秀云, 黄杜斌 等. KOH活化硅藻土模板炭及其电化学性能研究 [J]. 材料研究学报, 2017, 31: 321
doi: 10.11901/1005.3093.2016.366
|
6 |
Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324: 1530
doi: 10.1126/science.1158877
pmid: 19541989
|
7 |
El-Kady M F, Strong V, Dubin S, et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335: 1326
doi: 10.1126/science.1216744
pmid: 22422977
|
8 |
Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332: 1537
doi: 10.1126/science.1200770
|
9 |
Shaikh S F, Shaikh F F M, Shaikh A V, et al. Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application [J]. J. Phys. Chem. Solid., 2021, 149: 109774
doi: 10.1016/j.jpcs.2020.109774
|
10 |
Zhao J, Zhu B, Yang G, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors [J]. J. Phys. Chem. Solid., 2021, 150: 109856
doi: 10.1016/j.jpcs.2020.109856
|
11 |
Kakaei K, Khodadoost S, Gholipour M, et al. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor [J]. J. Phys. Chem. Solids, 2021, 148: 109753
doi: 10.1016/j.jpcs.2020.109753
|
12 |
Zhu S Z, Tang G X, Wang J, et al. Preparation and capacitance properties of polyaniline/carbon microcoil composites [J]. Chin. J. Mater. Res., 2016, 30: 186
|
12 |
朱士泽, 唐国霞, 王 健 等. 聚苯胺/碳螺旋纤维复合材料的合成及其电容特性研究 [J], 材料研究学报, 2016, 30: 186
doi: 10.11901/1005.3093.2015.361
|
13 |
Pal R, Goyal S L, Rawal I, High-performance solid-state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes [J]. J. Polym. Res., 2020, 27: 179
doi: 10.1007/s10965-020-02144-y
|
14 |
Ge M, Hao H, Lv Q, et al. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor [J]. Electrochim. Acta, 2020, 330: 135236
doi: 10.1016/j.electacta.2019.135236
|
15 |
Pal R, Goyal S L, Rawal I, Transition of charge transport phenomena from 3D to 1D hopping at low temperatures in polyaniline/graphene composites[J]. J. Appl. Phys., 2020, 128: 175108
doi: 10.1063/5.0020745
|
16 |
Viswanathan A, Shetty A N, Effect of dopants on the energy storage performance of reduced graphene oxide/polyaniline nanocomposite[J]. Electrochim. Acta, 2019, 327: 135026
doi: 10.1016/j.electacta.2019.135026
|
17 |
Li J, Xiao D, Ren Y, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials [J]. Electrochim. Acta, 2019, 300: 193
doi: 10.1016/j.electacta.2019.01.089
|
18 |
Ahirrao D J, Mohanapriya K, Wilson H M, et al. Solar reduced porous graphene incorporated within polyaniline network for high-performance supercapacitor electrode [J]. Appl. Surf. Sci., 2020, 510: 145485
doi: 10.1016/j.apsusc.2020.145485
|
19 |
Yu H, Ge X, Bulin C, et al. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application [J]. Electrochim. Acta, 2017, 253: 239
doi: 10.1016/j.electacta.2017.09.071
|
20 |
Li J, Xie H, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors [J]. J. Power Sources, 2011, 196: 10775
doi: 10.1016/j.jpowsour.2011.08.105
|
21 |
Xu Y, Schwab M G, Strudwick A J, et al. Screen printable thin film supercapacitor device utilizing graphene/polyaniline inks [J]. Adv. Energy Mater., 2013, 3: 1035
doi: 10.1002/aenm.201300184
|
22 |
Song N, Wang W, Wu Y, et al. Fabrication of highly ordered polyaniline nanocore on pristine graphene for high-performance supercapacitor electrodes [J]. J. Phys. Chem. Solid., 2018, 115: 148
doi: 10.1016/j.jpcs.2017.12.022
|
23 |
Liu L, Lang J W, Zhang P, et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte [J]. ACS Appl. Mater. Interfaces, 2016, 8: 9335
doi: 10.1021/acsami.6b00225
|
24 |
Chauhan N P S, Mozafari M, Chundawat N S, et al. High-performance supercapacitors based on polyaniline-graphene nanocomposites: some approaches, challenges and opportunities [J]. J. Industrial Eng. Chem., 2016, 36: 13
doi: 10.1016/j.jiec.2016.03.003
|
25 |
Zhang J M, Zhang Y, Yuan J, et al. High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@PANI for electrochemical capacitors [J]. Chem. Phys., 2019, 526: 110461
doi: 10.1016/j.chemphys.2019.110461
|
26 |
Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO 2 electrode material [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 17438
doi: 10.1007/s10854-018-9843-0
|
27 |
Liu Y Y, Ma L, Zhang D, et al. A simple route to prepare a Cu2O-CuO-GN nanohybrid for high-performance electrode materials [J]. RSC Advances, 2017, 7: 12027
doi: 10.1039/C6RA26535A
|
28 |
Wang G X, Tang Q Q, Bao H, et al. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance [J]. J. Power Sources, 2013, 241: 231
doi: 10.1016/j.jpowsour.2013.04.122
|
29 |
Peng H R, Lv S S, Li G C. Preparation and characterization of graphene/SnO2/polyaniline nano-composites [J]. J Qingdao Tech. Univ. 2011, 32: 6
|
29 |
彭红瑞, 吕莎莎, 李桂村. 石墨烯/SnO2/聚苯胺纳米复合材料的制备与表征 [J]. 青岛理工大学学报, 2011, 32: 6
|
30 |
Liu Z, Chen W L, Fan Xin, Preparation of 3D MnO2/polyaniline/graphene hybrid material via interfacial polymerization as high-performance supercapacitor electrode [J]. Chin. J. Chem., 2016, 34: 839
doi: 10.1002/cjoc.201600217
|
31 |
Fu S N, Ma L, Gan M Y, 3D reduced graphene oxide/MnO2/polyaniline composite for high-performance supercapacitor [J]. J Mater Sci: Mater Electron, 2017, 28: 3621
doi: 10.1007/s10854-016-5964-5
|
32 |
Chigane M, Ishikawa M, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J]. J. Electrochem. Soc., 2000, 147: 2246
doi: 10.1149/1.1393515
|
33 |
Jayaramulu K., Horn M., Schneemann A., et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
doi: 10.1002/adma.202004560
|
34 |
Brezesinski T., Wang J., Tolbert S. H., et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612
pmid: 20062048
|
35 |
Shen K. X., Chen H. D., Qin H. Q., et al. Construct pseudo-capacitance of a fexible 3D-entangled carbon nanofber flm as freestanding anode for dual-ion full batteries [J]. J Mater Sci: Mater Electron, 2020, 31: 10962
doi: 10.1007/s10854-020-03587-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|