Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 471-480    DOI: 10.11901/1005.3093.2021.366
  研究论文 本期目录 | 过刊浏览 |
Nb-TiAl合金的高温变形行为及其板材的性能
周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽()
上海航天精密机械研究所 上海 201600
High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy
ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli()
Shanghai Spaceflight Precision Machinery, Shanghai 201600, China
引用本文:

周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. 高Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
Haitao ZHOU, Xiangwu HOU, Yanbo WANG, Lv XIAO, Yong YUAN, Jingli SUN. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. Chinese Journal of Materials Research, 2022, 36(6): 471-480.

全文: PDF(17827 KB)   HTML
摘要: 

对高Nb-TiAl合金进行多步热压缩,研究其高温变形行为及其板材的性能。结果表明,热压缩变形后高Nb-TiAl合金的组织中等轴γ晶粒和α晶粒的增多、层片晶团的体积分数和尺寸降低,使其变形能力提高。根据这些结果确定了最优轧制工艺为应变速率低于0.5 s-1、道次变形量前期应不高于25%、变形温度高于1150℃。选用上述工艺对其其进行5道次大变形量轧制,制备出表面质量良好、无缺陷的高Nb-TiAl合金板材,其尺寸为600 mm×85 mm×3 mm。这种板材具有双态组织,平均晶粒尺寸小于5 μm,其室温屈服强度、抗拉强度和塑性分别为948 MPa、1084 MPa和0.94%,800℃下抗拉强度为758 MPa。

关键词 材料合成与加工工艺高Nb-TiAl合金高温变形行为板材显微组织力学性能    
Abstract

The high-temperature deformation behavior of high Nb containing TiAl alloy during step-by-step hot compression process was studied. Results show that the workability of high Nb containing TiAl alloy was improved after one hot compression deformation due to the increased volume fraction of equiaxed γ grains and α grains, as well as the decreased volume fraction and size of lamellar colony. Accordingly, based on the processing map and microstructure optimization, the optimal rolling process can be acquired as: the rolling process with strain rate lower than 0.5 s-1, deformation strain less than 25% in the early deformation stage and deformation temperature higher than 1150℃ was determined. Correspondingly, a large size of 600 mm×85 mm×3 mm high Nb containing TiAl alloy sheet with good surface quality and defect-free was successfully fabricated by hot pack rolling with 5 passes of large deformation rolling. The microstructure of the as-rolled high Nb containing TiAl alloy presented fine duplex microstructure with mean grain sizes of less than 5 μm. At room temperature, the as-rolled alloy exhibited yield strength, ultimate tensile strength and ductility as 948 MPa, 1084 MPa and 0.94%, respectively. The tensile strength at 800℃ also remained as high as 758 MPa.

Key wordsmaterial synthesis and processing technology    high Nb containing TiAl alloy    high-temperature deformation behavior    sheets    microstructure    mechanical property
收稿日期: 2021-06-21     
ZTFLH:  TG335.5  
基金资助:上海市青年科技杨帆计划(19YF1420000);上海市青年科技启明星计划(19QB1402000)
作者简介: 周海涛,男,1988年生,高级工程师
图1  室温和高温拉伸试样
图2  压缩50%的Ti-44Al-8Nb-0.2W-0.2B-Y合金试样的形貌
图3  压缩50%、25%和25%+33%的Ti-44Al-8Nb-0.2W-0.2B-Y合金试样的形貌
图4  锻态Ti-44Al-8Nb-0.2W-0.2B-Y合金在不同变形条件下变形50%和25%+33%的真应力-真应变曲线
图5  锻态Ti-44Al-8Nb-0.2W-0.2B-Y合金在1250℃/0.1 s-1条件下压缩不同应变量后的变形组织
图6  锻态Ti-44Al-8Nb-0.2W-0.2B-Y合金在1200℃/0.1 s-1/50%条件下变形后的显微组织
图7  总变形量为80%的Ti-44Al-8Nb-0.2W-0.2B-Y合金板材的形貌
图8  总变形量为80%的Ti-44Al-8Nb-0.2W-0.2B-Y合金板材的形貌
图9  轧态Ti-44Al-8Nb-0.2W-0.2B-Y合金的TEM组织
图10  轧态Ti-44Al-8Nb-0.2W-0.2B-Y合金在轧制方向的室温和800℃的拉伸性能
AlloyConditionRoom temperature800℃
Rm/MPaA/%Rm/MPaA/%
Ti-45Al-(8-9)Nb-(W, B, Y)Forged, DP [27]9122.364859
Rolled, NG [8]6681.55002
Ti-46Al-9Nb [25]Rolled, near γ7542.538078
Ti-43Al-6Nb-1B [28]Forged9750.879040
Forged, FL8601.075532
Ti-44Al-8Nb-(W, B, Y) [24]Forged9300.47407
Ti-45Al-10Nb[26]Extruded, DP10690.78834a5.4
Ti-45Al-7Nb-0.3W[9]Rolled, near γ≈815-≈715-
Ti-44Al-8Nb-0.2W-0.2B-YRolled, DP10840.98758≈58
表1  Ti-44Al-8Nb-0.2W-0.2B-Y合金与几种典型变形高Nb-TiAl合金拉伸性能的比较[8, 9, 24~28]
1 Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
2 Niu H Z, Chen X J, Chen Y F, et al. Microstructural stability, phase transformation and mechanical properties of a fully-lamellar microstructure of a Mo-modified high-Nbγ-TiAl alloy [J]. Mat. Sci. Eng., 2020, 784A: 139313
3 Song L, Appel F, Wang L, et al. New insights into high-temperature deformation and phase transformation mechanisms of lamellar structures in high Nb-containing TiAl alloys [J]. Acta. Mater., 2020, 186: 575
doi: 10.1016/j.actamat.2020.01.021
4 Ren G D, Dai C R, Mei W, et al. Formation and temporal evolution of modulated structure in high Nb-containing lamellar γ-TiAl alloy [J]. Acta. Mater., 2019, 165: 215
doi: 10.1016/j.actamat.2018.11.041
5 Li T R, Liu G H, Xu M, et al. High temperature deformation and control of homogeneous microstructure during hot pack rolling of Ti-44Al-5Nb-(Mo, V, B) alloys: the impact on mechanical properties [J]. Mater. Sci. Eng., 2019, 751A: 1
6 Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: status and opportunities [J]. JOM, 2004, 56(11): 42
7 Loria E A. Gamma titanium aluminides as prospective structural materials [J]. Intermetallics, 2000, 8: 1339
doi: 10.1016/S0966-9795(00)00073-X
8 Shen Z Z, Lin J P, Liang Y F, et al. A novel hot pack rolling of high Nb-TiAl sheet from cast ingot [J]. Intermetallics, 2015, 67: 19
doi: 10.1016/j.intermet.2015.07.009
9 Liu Y, Liang X P, Liu B, et al. Investigations on processing powder metallurgical high-Nb TiAl alloy sheets [J]. Intermetallics, 2014, 55: 80
doi: 10.1016/j.intermet.2014.07.013
10 Shen Z Z. The investigation of manufacturing, microstructure, properties of high Nb-TiAl alloy sheet [D]. Beijing: University of Science and Technology Beijing, 2016: 69
10 沈正章. 高Nb-TiAl合金板材制备及组织性能研究 [D]. 北京: 北京科技大学, 2016: 69
11 Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy [J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
12 Xu X J, Lin J P, Wang Y L, et al. Deformability and microstructure transformation of pilot ingot of Ti-45Al-(8-9)Nb-(W, B, Y) alloy [J]. Mater. Sci. Eng., 2006, 416A: 98
13 Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging [J]. Intermetallics, 2013, 34: 29
doi: 10.1016/j.intermet.2012.11.004
14 Cui N, Kong F T, Wang X P, et al. Microstructural evolution, hot workability, and mechanical properties of Ti-43Al-2Cr-2Mn-0.2Y alloy [J]. Mater. Design, 2016, 89: 1020
15 Liu B, Liu Y, Li Y P, et al. Thermomechanical characterization of β-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy [J]. Intermetallics, 2011, 19: 1184
doi: 10.1016/j.intermet.2011.03.021
16 Wang Y, Liu Y, Yang G Y, et al. Hot deformation behaviors of β phase containing Ti-43Al-4Nb-1.4W-based alloy [J]. Mater. Sci. Eng., 2013, 577A: 210
17 Schwaighofer E, Clemens H, Lindemann J, et al. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy [J]. Mater. Sci. Eng., 2014, 614A: 297
18 Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure [J]. Intermetallics, 2017, 81: 62
doi: 10.1016/j.intermet.2017.02.026
19 Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling [J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
20 Semiatin S L, Seetharaman V. Deformation and microstructure development during hot-pack rolling of a near-gamma titanium aluminide alloy [J]. Metall. Mater. Trans., 1995, 26A: 371
21 Kong F T, Cui N, Chen Y Y, et al. Characterization of hot deformation behavior of as-forged TiAl alloy [J]. Intermetallics, 2014, 55: 66
doi: 10.1016/j.intermet.2014.07.010
22 Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: lamellar colonies evolution and tensile properties [J]. Mater. Design, 2017, 121: 202
23 Zong Y Y, Wen D S, Liu Z Y, et al. γ-Phase transformation, dynamic recrystallization and texture of a forged TiAl-based alloy based on plane strain compression at elevated temperature [J]. Mater. Design, 2016, 91: 321
24 Zhang S Z, Zhang C J, Du Z X, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure [J]. Mater. Sci. Eng., 2015, 642A: 16
25 Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing [J]. Intermetallics, 2004, 12: 275
doi: 10.1016/j.intermet.2003.10.005
26 Appel F, Brossmann U, Christoph U, et al. Recent progress in the development of gamma titanium aluminide alloys [J]. Adv. Eng. Mater., 2000, 2: 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
27 Xu X J, Lin J P, Wang Y L, et al. Effect of forging on microstructure and tensile properties of Ti-45Al-(8-9)Nb-(W, B, Y) alloy [J]. J. Alloys Compd., 2006, 414: 175
doi: 10.1016/j.jallcom.2005.03.121
28 Niu H Z, Chen Y Y, Kong F T, et al. Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy [J]. Intermetallics, 2012, 31: 249
doi: 10.1016/j.intermet.2012.07.016
29 Cao G X, Fu L F, Lin J G, et al. The relationships of microstructure and properties of a fully lamellar TiAl alloy [J]. Intermetallics, 2000, 8: 647
doi: 10.1016/S0966-9795(99)00128-4
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[6] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.