Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 850-854    DOI: 10.11901/1005.3093.2021.622
  研究论文 本期目录 | 过刊浏览 |
氦离子辐照对钨纳米丝稳定性的影响
胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉(), 牛金海()
大连民族大学 辽宁省等离子体技术重点实验室 大连 116600
Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers
HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu(), NIU Jinhai()
Liaoning Key Laboratory of Plasma Technology, Dalian Minzu University, Dalian 116600, China
引用本文:

胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
Ruihang HU, Zhen YANG, Qijun LEI, Xinyang LI, Ziyu DONG, Xiaotong ZHANG, Hongyu FAN, Jinhai NIU. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. Chinese Journal of Materials Research, 2022, 36(11): 850-854.

全文: PDF(4235 KB)   HTML
摘要: 

用150 eV高能氦(He)离子在400 K对多晶钨(W)表面的W纳米丝进行间歇式辐照并使用扫描电子显微镜、透射电子显微镜以及称重法等手段对其表征,研究了He离子辐照对W纳米丝演变过程的影响。结果表明,高能He离子辐照使W纳米丝极不稳定。随着辐照剂量的增加W纳米丝之间的交联程度逐渐降低。W丝内的He泡在高能He离子溅射的作用下破裂,使W丝塌陷合并,部分溅射出来的W原子沉积在近邻的W纳米丝外壁或W丝根部,最终使W纳米丝演变成顶部细根部粗的锥型结构。

关键词 金属学氦离子辐照溅射    
Abstract

Nanoscale tungsten whiskers grown on the surface of polycrystalline W-plate was subjected intermittently to irradiation of He ions with energy of 150 eV at 400 K. The effect of He ion irradiation on the evolution of nanoscale W-whiskers were investigated by means of scanning electron microscope, transmission electron microscope and mass loss method. The results show that nanoscale W-whiskers were extremely unstable in the course of high-energy He ion irradiation, and the degree of crosslinking between W-whiskers decreases gradually with the increase of irradiation fluence. Due to high-energy He ion sputtering, He bubbles existed in the whiskers will break and lead to collapse and coalesce of the W-whiskers. Meanwhile, certain amount of the yielded W atoms by He ion sputtering may re-deposited on the outer wall or the root of the nanoscale whiskers nearby, and finally, the relevant nanoscale whiskers may evolve into a cone-shaped structure with a thin top and a thick root.

Key wordsmetallography    tungsten    He ions irradiation    sputtering
收稿日期: 2021-11-04     
ZTFLH:  TG14  
基金资助:国家自然科学基金(11405023);辽宁省自然科学基金(20180510006);辽宁省大学生创新创业训练项目(202112026040);大连民族大学“太阳鸟”学生科研项目(tyn2021150)
作者简介: 胡瑞航,男,2001年生,本科生
图1  间歇式He离子辐照后W纳米丝表面的SEM照片
图2  间歇式He离子辐照后W纳米丝表面的高分辨SEM照片
图3  间歇式He离子辐照后W纳米丝截面的SEM照片和W丝层的厚度随辐照剂量的变化
图4  W丝样品的质量损失和溅射率与He离子辐照剂量的关系
图5  用不同剂量He离子辐照后W丝的透射电镜照片
1 Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma Fusion Res., 2006, 1: 051
2 Meyer F W. He-ion induced surface morphology change and nanofuzz growth on hot tungsten surfaces [J]. J. Phys. B: At. Mol. Opt. Phys., 2019, 52: 012001
3 Hao Z L, Fan H Y, Guo J Y, et al. He Plasma Assisted Preparation of Nanostructure Tungsten Materials [J]. Chinese Journal of Materials Research, 2017, 31(6): 415
doi: 10.11901/1005.3093.2015.775
3 郝志玲, 范红玉, 郭佳玉 等. He等离子体辅助的纳米钨结构材料的制备 [J]. 材料研究学报, 2017, 31(6): 415
doi: 10.11901/1005.3093.2015.775
4 Rapp J. The challenges of plasma material interations in nuclear fusion Devices and potential solutions [J]. Fusion Sci. Technol., 2017, 72: 211
5 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
6 Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
doi: 10.1016/j.jnucmat.2011.06.026
7 Wright G, Brunner D, baldwin M, et al. Comparison of tungsten nano-tendrils grown in alcator c-mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438: S84
doi: 10.1016/j.jnucmat.2013.01.013
8 Ni W, Zhang Y, Cui Y, et al. The effect of fusion-relevant He ion flux on the evolution of He nano-bubbles in W [J]. Plasma Phys. Control. Fusion, 2020, 62: 065002
9 Bi Z, Liu D, Zhang Y, et al. The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradition conditions [J]. Nucl. Fusion, 2019, 59: 086025
10 Sandoval L, Perez D, Uberuaga B P, et al. Competing kinetics and He bubble morphology in W [J]. Phys. Rev. Lett., 2015, 114: 105502
doi: 10.1103/PhysRevLett.114.105502
11 Martynenko Y V, Nagel M Y. Model of fuzz formation on a tungsten surface [J]. Plasma Phys. Rep., 2012, 39: 996
12 Patino M I, Nishijima D, Tokitani M, et al. Material mixing during fuzz formation in W and Mo [J], Phys. Scr., 2020, T171: 014070
13 Ni W, Niu C, Zhang Y, et al. Modeling W fuzz growth over polycrystalline W due to He ion irradiations at an elevated temperature [J]. J. Nucl. Mater., 2021, 550: 152917
doi: 10.1016/j.jnucmat.2021.152917
14 Yang Q, You Y W, Liu L, et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation [J]. Sci. Rep., 2015, 5: 10959
doi: 10.1038/srep10959 pmid: 26077598
15 Li M, Fan H Y, Cui H J, et al. Low-energy helium-ions irradiation induced morphology and crystalline evolution of tungsten [J]. Nuclear Techniques, 2017, 40(10): 100201
15 李 萌, 范红玉, 崔荷敬 等. 低能氦离子辐照诱导的钨材料结构演化 [J]. 核技术, 2017, 40(10): 100201
[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[5] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[6] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[7] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[8] 杨雅娜, 陈文革, 薛元琳. 碳纤维表面溅射金属增强铜基复合材料的界面结合[J]. 材料研究学报, 2021, 35(6): 467-473.
[9] 孙茂林, 宫震, 王施文, 尹航, 李瑞武, 张政, 李雨彤, 吴法宇. 氧控In2O3薄膜的光电性能[J]. 材料研究学报, 2021, 35(5): 394-400.
[10] 张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
[11] 宋贵宏, 李秀宇, 李贵鹏, 杜昊, 胡方. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.
[12] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[13] 玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
[14] 谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(4): 272-276.
[15] 王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.