Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 474-480    DOI: 10.11901/1005.3093.2020.385
  研究论文 本期目录 | 过刊浏览 |
原位自生法制备石墨烯增强镁基复合材料的工艺和性能
王殿君1(), 张明秋1, 吉泽升2, 张吉生1, 魏源1
1.黑龙江工业学院现代制造工程学院 鸡西 158100
2.哈尔滨理工大学材料科学与工程学院 哈尔滨 151000
Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method
WANG Dianjun1(), ZHANG Mingqiu1, JI Zesheng2, ZHANG Jisheng1, WEI Yuan1
1.School of Modern Manufacturing Engineering, Heilongjiang Institute of Technology, Jixi 158100, China
2.School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 151000, China
引用本文:

王殿君, 张明秋, 吉泽升, 张吉生, 魏源. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能[J]. 材料研究学报, 2021, 35(6): 474-480.
Dianjun WANG, Mingqiu ZHANG, Zesheng JI, Jisheng ZHANG, Yuan WEI. Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method[J]. Chinese Journal of Materials Research, 2021, 35(6): 474-480.

全文: PDF(12947 KB)   HTML
摘要: 

采用原位自生法制备石墨烯增强的镁基复合材料,并使用Raman、XPS、XRD、SEM和TEM以及电子万能拉伸试验机等手段表征了原位生成的石墨烯的微观形貌和复合材料的力学性能。结果表明:进行原位反应可制备石墨烯增强的镁基复合材料,反应温度越高原位生成的石墨烯的质量越好,制备出的复合材料的性能越高。反应温度为780℃时复合材料的力学性能达到最大值,其屈服强度、抗拉强度和延伸率分别为245 MPa、340 MPa和6.7%,比基体的力学性能分别提高了40%、21.4%和48.8%。

关键词 复合材料原位自生法石墨烯镁基复合材料显微组织力学性能    
Abstract

The graphene reinforced Mg-based composite material was prepared by in-situ method, and then the in-situ generated graphene and the prepared composite were characterized by means of Raman, XPS, XRD, SEM, TEM and electronic universal tensile testing machine. The results show that graphene-reinforced Mg-based composites can be prepared via in-situ reaction. As the reaction temperature increases the quality of the in-situ generated graphene increases, and the performance of the resulted composites is better. When the reaction temperature is 780℃ the mechanical properties of the composite material reach the maximum, namely, its yield strength, tensile strength and elongation are 245 MPa, 340 MPa and 6.7%, respectively. The yield strength, tensile strength and elongation increased by 40%, 21.4% and 48.8%, respectively, compared with the plain Mg-alloy.

Key wordscomposite    in situ method    graphene    magnesium matrix composite    microstructure    mechanical properties
收稿日期: 2020-09-11     
ZTFLH:  TB331  
基金资助:黑龙江省自然科学基金(LH2019E117)
作者简介: 王殿君,男,1976年生,副教授
AlZnMnSiCuFeMg
2.801.000.250.060.010.01Bal.
表1  AZ31镁合金的化学成分
图1  原位反应制备石墨烯/镁复合材料的流程
图2  在不同反应温度下原位自生的石墨烯的拉曼光谱和ID/IG和I2D/IG比值
图3  在780℃原位自生的石墨烯的XRD谱
图4  在780℃原位自生石墨烯的XPS分析
图5  在780℃原位自生石墨烯的SEM形貌和在镁基体中的分布
图6  在780℃原位自生石墨烯的TEM形貌
图7  原位自生石墨烯增强镁基复合材料的力学性能
图8  在780℃原位自生石墨烯增强镁基复合材料的断口形貌
1 Wei S H, Hu M L, Ji Z S, et al. Evaluation of microstructure and properties of AZ31/Al2O3 composites prepared by solid-phase synthesis [J]. Materials Science and Technology, 2018, 34(17): 2097
2 Ren F Z, Wu S Z, Shi W. Interface characteristics and damping performance of Ni-coated short carbon fiber reinforced AZ91D magnesium matrix composites [J]. Chinese Journal of Materials Research, 2017, 31(1): 74
2 任富忠, 吴思展, 石维. 镍涂层短碳纤维增强AZ91D镁基复合材料的界面特征和阻尼性能 [J]. 材料研究学报, 2017, 31(1): 74
3 Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. Journal of Magnesium and Alloys, 2020, 8(3): 952
4 Wei S H, Hu M L, Ji Z S, et al. Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion [J]. Journal of Materials Engineering, 2019, 47(12): 85
4 魏帅虎, 胡茂良, 吉泽升等. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能 [J]. 材料工程, 2019, 47(12): 85
5 Balasubramaniam I, Maheswana R, Manikandan V, et al. Mechanical characterization and machining of squeeze cast AZ91D/SiC magnesium based metal matrix composites [J]. Procedia Manufacturing, 2018, 20: 97
6 Mustafa A, Bilge D, Muhammet T. Hybrid reinforced magnesium matrix composites (Mg/SiC/GNPs): drilling investigation [J]. Metals-Open Access Metallurgy Journal, 2018, 8(4): 215
7 Nie K B, Deng K K, Wang X J, et al. Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting [J]. Journal of Materials Research, 2017, 32(13): 1
8 Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesium matrix composites [J]. Scripta Materialia, 2003, 48(6): 713
9 Zhang X Q, Wang E Q, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) ceramic particulate [J]. Materials Letters, 2005
10 Habibnejad K M, Mahmudi R, Poole W J. Work hardening behavior of Mg-based nano-composites strengthened by; Al2O3 nano-particles [J]. Materials Science and Engineering A, 2013, 567: 89
11 Deng K K, Li J C, Xu F J, et al. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite [J]. Materials & Design, 2015, 67: 72
12 Deng K K, Wang C J, Wang X J. Microstructure, mechanical properties and strengthening mechanism of SiCP /AZ91 composites [J]. Acta Materiae Compositae Sinica, 2014, 31(002): 388
12 邓坤坤, 王翠菊, 王晓军. SiCP/AZ91复合材料的显微组织、力学性能及强化机制 [J]. 复合材料学报, 2014, 31(002): 388
13 Xiang S L, Hu X S, Wang X J, et al. Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites [J]. Materials Science and Engineering A, 2018, 724: 348
14 Yuan Q H, Zhou G H, Liu Y, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127
15 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96
16 Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon, 2018, 139
17 Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Materials Science and Engineering A, 2014, 597(8): 264
18 Wang L D, Wei B, Dong P, et al. Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells [J]. Materials & Design, 2016, 92
19 Xiang S L, Hu X S, Wang X J, et al. Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites [J]. Materials Science and Engineering A, 2018, 724: 348
20 Meng L L, Hu X S, Wang X J, et al. Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction [J]. Materials Science and Engineering A, 2018, 733: 414
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[5] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[6] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[7] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[9] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.