Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (2): 81-92    DOI: 10.11901/1005.3093.2020.215
  研究论文 本期目录 | 过刊浏览 |
表面活性剂辅助农药在锂皂石中的插层及其性能
刘洁翔1(), 刘蕊1, 张晓光2()
1.河北工业大学化工学院 天津 300130
2.南开大学化学学院 天津 300071
Preparation and Property of Laponite with Pesticide Intercalation
LIU Jiexiang1(), LIU Rui1, ZHANG Xiaoguang2()
1.School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
2.College of Chemistry, Nankai University, Tianjin 300071, China
引用本文:

刘洁翔, 刘蕊, 张晓光. 表面活性剂辅助农药在锂皂石中的插层及其性能[J]. 材料研究学报, 2021, 35(2): 81-92.
Jiexiang LIU, Rui LIU, Xiaoguang ZHANG. Preparation and Property of Laponite with Pesticide Intercalation[J]. Chinese Journal of Materials Research, 2021, 35(2): 81-92.

全文: PDF(14521 KB)   HTML
摘要: 

利用两性表面活性剂十六烷基磺基甜菜碱(SB)的辅助作用实现了农药功夫菊酯(LCT)在锂皂石(LAP)中的插层。先用离子交换法将SB、十二烷基羧基甜菜碱(DCB)、十二烷基氧化胺(OA)和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)分别插层LAP,然后用SB胶束将LCT引入层间,得到LCT/SB-LAP、LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP复合材料。采用X射线衍射(XRD)、液体核磁共振(1HNMR)、电感耦合等离子发射光谱(ICP-OES)、傅里叶变换红外光谱(FT-IR)、热重/差热分析(TGA/DTA)和扫描电镜(SEM)对复合材料进行了表征。结果表明,LCT/SB-LAP、LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP的层间高度分别为3.61、3.13、3.13和3.41 nm;LCT伴随SB分子成功进入LAP层间。提出了LCT在LAP中的插层机理。对复合材料中LCT释放行为的研究结果表明,释放速率和累积释放量主要依赖表面活性剂类型及其在层间的排列方式。

关键词 复合材料锂皂石杂化材料胶束功夫菊酯释放行为    
Abstract

The laponite (LAP) with intercalation of pesticide lambda-cyhalothrin (LCT) was prepared with surfactant of 3-sulphonyl hexadecyldimethylamine (SB) as accessory ingredient. The zwitterionic surfactant of SB, dodecyl dimethyl carboxylbetaine (DCB), N,N-dimethyldodecylamine N-oxide(OA) and cationic surfactant cetyl trimethyl ammonium bromide (CTAB) were separately intercalated into laponite (LAP), and then LCT was solubilized into SB micelles and intercalated into the galleries finally composites of LCT/SB-LAP, LCT/DCB-SB-LAP, LCT/OA-SB-LAP and LCT/CTAB-SB-LAP were obtained. These composites were systematically characterized by powder X-ray diffraction (XRD), liquid state nuclear magnetic resonance (1H NMR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), fourier transform infrared (FT-IR) spectroscopy, thermogravimetry/differential thermal analysis (TGA/DTA) and scanning electron microscope (SEM). The results show that the interlamellar spacings of LCT/SB-LAP, LCT/DCB-SB-LAP, LCT/OA-SB-LAP and LCT/CTAB-SB-LAP were 3.61, 3.13, 3.13 and 3.41 nm, respectively. The LCT companying SB molecules entered into the interlamellar of LAP was confirmed by 1H NMR, ICP-OES and spectroscopy FT-IR. The intercalation mechanism of LCT induced by SB micelles was proposed. The release behavior of LCT from composites was investigated and analyzed. The release rates and cumulative amounts are mainly dependent on type and arrangement of surfactants in the interlamellar spacing.

Key wordscomposite    laponite hybrid material    micelle    lambda-cyhalothrin    release behavior
收稿日期: 2020-06-08     
ZTFLH:  O641  
基金资助:国家重点研发计划(2016YFD0200707)
作者简介: 刘洁翔,女,1973年生,博士
图1  SB、DCB、OA和CTAB的结构示意图
图2  SB(OA、DCB、CTAB)-LAP,LCT/SB-LAP 和 LCT/DCB(OA、CTAB)-SB-LAP的XRD谱
图3  表面活性剂和LCT分子在LAP层间排列的示意图
图4  LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP的1H NMR谱图
SamplesSulfur content/%SamplesSulfur content/%
DCB0.250LAP0.190
DCB-LAP0.181LCT/DCB-SB-LAP1.39
SB-LAP8.36LCT/SB-LAP2.97
OA-LAP1.35LCT/OA-SB-LAP2.52
CTAB-LAP0.145LCT/CTAB-SB-LAP1.06
表1  不同样品的S含量(质量分数)
图5  样品的红外谱图
图6  样品的TGA/DTA曲线
图7  样品的SEM照片
图8  LCT/SB-LAP、LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP在不同缓冲溶液中的释放曲线
图9  LCT/SB-LAP、LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP的准二级动力学拟合曲线
图10  LCT/SB-LAP、LCT/DCB-SB-LAP、LCT/OA-SB-LAP和LCT/CTAB-SB-LAP的抛物线扩散拟合曲线
Samples

Zeta potentials

/mV

Samples

Zeta potentials

/mV

DCB12.28SB-28.30
OA-10.14CTAB18.67
DCB-LAP-29.79LCT/DCB-SB-LAP-36.36
SB-LAP-65.48LCT/SB-LAP-63.33
OA-LAP-46.32LCT/OA-SB-LAP-58.62
CTAB-LAP24.10LCT/CTAB-SB-LAP-25.77
表2  不同复合材料的Zeta电势
SamplesRelease mediumPseudo second-order modelParabolic diffusion model
kR2kdR2
LCT/SB-LAPpH 5.02.200.99100.1430.9804
pH 6.81.830.99500.1970.9639
LCT/DCB-SB-LAPpH 5.01.400.99870.09760.9923
pH 6.81.720.99720.1300.9872
LCT/OA-SB-LAPpH 5.01.770.99950.1300.9886
pH 6.81.710.99880.1260.9837
LCT/CTAB-SB-LAPpH 5.02.580.99990.1280.9759
pH 6.82.630.99980.1230.9740
表3  由准二级动力学和抛物线扩散模型拟合释放的数据
1 Pieper H, Bosbach D, Panak P J, et al. Eu(III) coprecipitation with the trioctahedral clay mineral, hectorite [J]. Clays Clay Miner., 2006, 54: 45
2 Baskaralingam P, Pulikesi M, Ramamurthi V, et al. Modified hectorites and adsorption studies of a reactive dye [J]. Appl. Clay Sci., 2007, 37: 207
3 Lair V, Carbonnell C, Peyre V, et al. Potentiometric determination of adsorption isotherms of dodecyldimethylamine-N-oxide onto laponite [J]. Colloids Surf. A, 2003, 212: 265
4 Lamont R E, Ducker W A. Surface-induced transformations for surfactant aggregates [J]. J. Am. Chem. Soc., 1998, 120: 7602
5 Thiebault T, Brendlé J, Augé G, et al. Zwitterionic-surfactant modified LAPONITE®s for removal of ions (Cs+, Sr2+ and Co2+) from aqueous solutions as a sustainable recovery method for radionuclides from aqueous wastes [J]. Green Chem., 2019, 21: 5118
6 Esumi K, Yoshida K, Torigoe K, et al. Sorption of 2-naphthol and copper ions by cationic surfactant-adsorbed laponite [J]. Colloids Surf. A, 1999, 160: 247
7 Nair B P, Sindhu M, Nair P D. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications [J]. Colloids Surf. B, 2016, 143: 423
8 Pacelli S, Paolicelli P, Moretti G, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications [J]. Eur. Polym. J., 2016, 77: 114
9 Roozbahani M, Kharaziha M, Emadi R. pH sensitive dexamethasone encapsulated laponite nanoplatelets: release mechanism and cytotoxicity [J]. Int. J. Pharm., 2017, 518: 312
10 Wang S G, Wu Y L, Guo R, et al. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells [J]. Langmuir, 2013, 29: 5030
11 Wang G Y, Maciel D, Wu Y L, et al. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16687
12 Wu Y L, Guo R, Wen S H, et al. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery [J]. J. Mater. Chem. B, 2014, 2: 7410
13 Chen G X, Li D, Li J C, et al. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nano-disks [J]. New J. Chem., 2015, 39: 2847
14 Xiao S L, Castro R, Maciel D, et al. Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating [J]. Mater. Sci. Eng. C, 2016, 60: 348
15 Hamilton A R, Roberts M, Hutcheon G A, et al. Formulation and antibacterial properties of clay mineral-tetracycline and-doxycycline composites [J]. Appl. Clay Sci., 2019, 179: 105148
16 Liu J X, Zhang X G, Zhang Y Q. Preparation and release behavior of chlorpyrifos adsolubilized into layered zinc hydroxide nitrate intercalated with dodecylbenzenesulfonate [J]. ACS Appl. Mater. Interfaces, 2015, 7: 11180
17 Zhang H, Pan D K, Zou K, et al. A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release [J]. J. Mater. Chem., 2009, 19: 3069
18 Jiang W, Su H J, Huo H Y, et al. Synthesis and properties of surface molecular imprinting adsorbent for removal of Pb2+ [J]. Appl. Biochem. Biotechnol., 2010, 160: 467
19 Lu L F, Gao M L, Yang S F, et al. Preparation and adsorption for ciprofloxacin of bentonite modified by zwitterionic surfactant [J]. Chin. J. Mater. Res., 2013, 27: 576
19 路来福, 高芒来, 杨森锋等. 两性表面活性剂改性膨润土的制备及其对环丙沙星的吸附性能 [J]. 材料研究学报, 2013, 27: 576
20 Jung H, Kim H M, Choy Y B, et al. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole [J]. Int. J. Pharm., 2008, 349: 283
21 Wang J X, Morales-Collazo O, Wei A. Micellization and single-particle encapsulation with dimethylammoniopropyl sulfobetaines [J]. ACS Omega, 2017, 2: 1287
22 Liu J X, Wang J L, Zhang X G, et al. Preparation and structural characterization of zwitterionic surfactant intercalated into NiZn-layered hydroxide salts [J]. J. Phys. Chem. Solids, 2015, 85: 180
23 Maeda H. A thermodynamic analysis of the hydrogen ion titration of micelles [J]. J. Colloid Interface Sci., 2003, 263: 277
24 Fan N Q, Fan Y X, Tong D S, et al. Study on structure characteristics of organic hectorite hydrothermally synthesized in reaction medium with the presence of surfactants [J]. J. Chem. Eng. Chin. Univ., 2010, 24: 852
24 范能全, 范永仙, 童东绅等. 表面活性剂介质中有机化锂皂石的水热合成及结构特征 [J]. 高校化学工程学报, 2010, 24: 852
25 Liu J X, Wang J L, Zhang X G. Intercalation, characterization and release behavior of imidacloprid into layered hydroxide salts by coupling of (3-glycidyloxypropyl) trimethoxysilane [J]. Colloids Surf., 2018, 553A: 42
26 Li T, Liu Z L, Xiao M, et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering [J]. RSC Adv., 2017, 7: 54100
27 Tang L C, Wei W, Wang X H, et al. Laponite® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds [J]. RSC Adv., 2018, 8: 10794
28 Kuźniarska-Biernacka I, Silva A R, Carvalho A P, et al. Organo-laponites as novel mesoporous supports for manganese(III) salen catalysts [J]. Langmuir, 2005, 21: 10825
29 Zhang P, Wang J, Jia Y, et al. Encapsulating spinel nancrystals in Laponite cages and applications in molecular oxidation of cyclohexane [J]. Appl. Clay Sci., 2019, 181: 105226
30 Zhang L, Li J J, Liu T Q. Preparation and properties of water-based cypermethrin microemulsion [J]. J. Yangzhou Univ. (Nat. Sci. Ed.), 2012, 15(2): 38
30 张龙, 李佳佳, 刘天晴. 水基型氯氰菊酯农药微乳剂的研制与性质 [J]. 扬州大学学报(自然科学版), 2012, 15(2): 38
31 Bi G, Feng Z G, Tian S Z, et al. Infrared spectroscopy study on the photolysis products of pyrthroids [J]. Chin. J. Spectrosc. Lab., 1995, 12(6): 39
31 毕刚, 冯子刚, 田世忠等. 拟除虫菊酯光解产物的红外图谱研究 [J]. 光谱实验室, 1995, 12(6): 39
32 Ma L Y, Chen Q Z, Zhu J X, et al. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems [J]. Chem. Eng. J., 2016, 283: 880
33 Zhou C H, Du Z X, Li X N, et al. Structure development of hectorite in hydrothermal crystallization synthesis process [J]. Chinese J. Inorg. Chem., 2005, 21: 1327
33 周春晖, 杜泽学, 李小年等. 水热体系合成锂皂石结构的演化和影响规律研究 [J]. 无机化学学报, 2005, 21: 1327
34 Wang B X, Zhou M, Rozynek Z, et al. Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability [J]. J. Mater. Chem., 2009, 19: 1816
35 Li J Y, Yang Y, Yu Y B, et al. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate [J]. J. Mater. Chem. B, 2018, 6: 5011
36 Jatav S, Joshi Y M. Chemical stability of laponite in aqueous media [J]. Appl. Clay Sci., 2014, 97-98: 72
37 Dening T J, Thomas N, Rao S S, et al. Montmorillonite and laponite clay materials for the solidification of lipid-based formulations for the basic drug blonanserin: In vitro and in vivo Investigations [J]. Mol. Pharm., 2018, 15: 4148
38 Sanchez-Martin M J, Rodriguez-Cruz M S, Andrades M S, et al. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity [J]. Appl. Clay Sci., 2006, 31: 216
39 McLauchlin A R, Thomas N L. Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant [J]. Polym. Degrad. Stab., 2009, 94: 868
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.