Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 53-58    DOI: 10.11901/1005.3093.2020.036
  研究论文 本期目录 | 过刊浏览 |
二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性
王永鹏, 贾治豪, 刘梦竹()
吉林化工学院 吉林 132022
Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors
WANG Yongpeng, JIA Zhihao, LIU Mengzhu()
Jilin Institute of Chemical Technology, Jilin 132022, China
引用本文:

王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
Yongpeng WANG, Zhihao JIA, Mengzhu LIU. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. Chinese Journal of Materials Research, 2021, 35(1): 53-58.

全文: PDF(3514 KB)   HTML
摘要: 

以聚乙烯吡咯烷酮(PVP)为模板采用静电纺丝法并结合高温煅烧制备出二维CdO纳米棒,用SEM、TGA、DSC、FT-IR及XRD等手段对产物的形貌和结构进行了表征。结果表明,所得纳米棒为纯度较高的CdO,呈互相粘连的二维平面薄膜和多孔结构形貌。这种形貌的生成与聚合物的熔融分解有关。用这种材料修饰玻碳电极并检测了对葡萄糖的电氧化性能,结果表明:与普通CdO粉(末修饰的)玻碳电极相比,修饰过的电极表现出较强的响应性和抗干扰性。其原因是,CdO的二维纳米棒状形貌增大了比表面积,从而使其活性提高。将二维CdO纳米棒用于葡萄糖传感器,具有可行性。

关键词 材料合成与加工工艺氧化镉纳米棒静电纺丝葡萄糖传感器二维纳米结构    
Abstract

2-dimensional CdO nanorods were fabricated by electrospinning technique with poly(vinyl pyrrolidone) (PVP) as template and subsequently calcinated. SEM, TGA, DSC, FT-IR and XRD were used to characterize the morphology and structure of the as-prepared nanorods. The results show that the CdO nanorods is highly purified with a special morphology, namely, the nanorods stick together to form a porous film. The special morphology is related to the melting of PVP polymer during calcination. The prepared CdO nanorods were subsequently used to modify a glassy carbon electrode and then, with which the direct electrocatalytic oxidation of glucose was investigated. Results show that the CdO nanorods modified electrode has a better response to glucose and stronger resistance to the interference from AA, UA and ethanol rather than the electrode modified with CdO powder. The improved performance can be ascribed to the 2-dimensional CdO nanorods morphology, which enhanced the specific surface area, thereby enhancing the activity of electrode, facilitating the oxidation of glucose. So that, the fabricated CdO nanorods have the possibility of application as glucose sensor.

Key wordssynthesizing and processing technics for materials    cadmium oxide nanorods    electrospinning    glucose sensor    two-dimensional nano structure
收稿日期: 2020-02-06     
ZTFLH:  O69  
基金资助:吉林省教育厅“十三五”科学技术项目(JJKH20190831KJ);吉林市科技创新发展计划(201831765)
作者简介: 王永鹏,男,1986年生,博士,副教授
图1  PVP/Cd(CH3COO)2复合纳米纤维煅烧前、煅烧后和纯CdO粉末的扫描电镜(SEM)照片
图2  纳米棒的生成原理示意图
图3  纯PVP纳米纤维和PVP/Cd(CH3COO)2复合纳米纤维的TGA曲线和DSC曲线
图4  PVP/Cd(CH3COO)2复合纳米纤维及其在600℃煅烧4 h 后的红外光谱
图5  纯CdO粉末和PVP/Cd(CH3COO)2复合纳米纤维高温煅烧后的XRD谱图
图6  CdO-powder-GCE和CdO-NRs-GCE在0.1 mol/L NaOH中的循环伏安曲线
图7  CdO-NRs-GCE在不同溶液中的循环伏安曲线
图8  CdO-powder-GCE电极和CdO-NRs-GCE电极在0.40 V条件下对0.1 mol/L NaOH溶液连续添加3 mmol/L葡萄糖、0.1 mmol/L抗坏血酸、0.1 mmol/L尿酸、10 mmol/L乙醇后的抗干扰分析测试曲线
1 Crespilho F N, Esteves M C, Sumodjo P T A, et al. Development of highly selective enzymatic devices based on deposition of permselective membranes on aligned nanowires [J]. J. Phys. Chem., 2009, 113C: 6037
2 Okahata Y, Tsuruta T, Ijiro K, et al. Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes [J]. Langmuir, 1988, 4: 1373
3 Bai Y, Sun Y Y, Sun C Q. Pt-Pb nanowire array electrode for enzyme-free glucose detection [J]. Biosen. Bioelectron., 2008, 24: 579
4 Wang J P, Thomas D F, Chen A C. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks [J]. Anal. Chem., 2008, 80: 997
5 Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochem. Commun., 2007, 9: 981
6 Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum [J]. Anal. Chem., 2003, 75: 3046
7 Liu Y X, Ding Y, Zhang Y C, et al. Pt-Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment [J]. Sens. Actuators, 2012, 171-172B: 954
8 Subramanyam K T, Rao G M, Uthanna S. Process parameter dependent property studies on CdO films prepared by DC reactive magnetron sputtering [J]. Mater. Chem. Phys., 2001, 69: 133
9 Champness C H, Ghoneim K, Chen J K. An improved conventional Se-CdO photovoltaic cell [J]. Can. J. Phys., 1985, 63: 767
10 Su L M, Grote N, Schmitt F. Diffused planar InP bipolar transistor with a cadmium oxide film emitter [J]. Electron. Lett., 1984, 20: 716
11 Guo Z, Li M Q, Liu J H. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties [J]. Nanotechnology, 2008, 19: 245611
12 Zhao Z Y, Morel D L, Ferekides C S. Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition [J]. Thin Solid Films, 2002, 413: 203
13 Zhang Y, Kolmakov A, Chretien S, et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it [J]. Nano Lett., 2004, 4: 403
14 Sahay R, Kumar P S, Aravindan V, et al. High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability [J]. J. Phys. Chem., 2012, 116C: 18087
15 Varghese N, Panchakarla L S, Hanapi M, et al. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO [J]. Mater. Res. Bull., 2007, 42: 2117
16 Zhang F, Be F L, Cao J M, et al. The preparation of CdO nanowires from solid-state transformation of a layered metal-organic framework [J]. J. Solid State Chem., 2008, 181: 143
17 Kuo T J, Huang M H. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport [J]. J. Phys. Chem., 2006, 110B: 13717
18 Wang Y W, Liang C H, Wang G Z, et al. Preparation and characterization of ordered semiconductor CdO nanowire arrays [J]. J. Mater. Sci. Lett., 2001, 20: 1687
19 Singh P, Pandey S K, Singh J, et al. Biomedical perspective of electrochemical nanobiosensor [J]. Nano-Micro Lett., 2016, 8: 193
20 Zhang L, Ye C, Li X, et al. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor [J]. Nano-Micro Lett., 2018, 10: 28
21 Wang Y P, Xu Z B, Liu M Z, et al. Non-enzymatic glucose sensor based on the electrospun porous foamy copper oxides micro-nanofibers [J]. Chem. J. Chin. Univ., 2019, 40: 1310
21 王永鹏, 徐子勃, 刘梦竹等. 多孔泡沫状CuO微纳米纤维的制备及用于无酶葡萄糖传感器 [J]. 高等学校化学学报, 2019, 40: 1310
22 Ding Y, Wang Y, Zhang L C, et al. Preparation, characterization and application of novel conductive NiO-CdO nanofibers with dislocation feature [J]. J. Mater. Chem., 2012, 22: 980
[1] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[2] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[3] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[4] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] 许文萃, 林英正, 邵再东, 郑煜铭, 程璇, 钟鹭斌. 碳纳米纤维气凝胶的制备及其吸油性能[J]. 材料研究学报, 2021, 35(11): 820-826.
[6] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[7] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[8] 郑勰, 查刘生. 超快温度响应性纳米纤维水凝胶的制备及其用于药物的可控释放[J]. 材料研究学报, 2020, 34(6): 452-458.
[9] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[10] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[11] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[12] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[13] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[14] 胡秀丽,姚霞喜,张文君,纪网金,穆加成,雍钰雯,王旭红. 不同碳源多孔碳纤维制备及其吸附性能[J]. 材料研究学报, 2019, 33(5): 379-386.
[15] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.