Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 861-867    DOI: 10.11901/1005.3093.2020.167
  研究论文 本期目录 | 过刊浏览 |
宏量制备层状Ti3C2及其超级电容的性能
杨占鑫, 吴琼(), 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超
辽宁工业大学材料科学与工程学院 锦州 121001
Massive Preparation and Supercapacitor Performance of Layered Ti3C2
YANG Zhanxin, WU Qiong(), REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao
School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
引用本文:

杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
Zhanxin YANG, Qiong WU, Yiqiao REN, Kaikai QU, Zhehao ZHANG, Weili ZHONG, Guangning FAN, Guochao QI. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. Chinese Journal of Materials Research, 2020, 34(11): 861-867.

全文: PDF(9587 KB)   HTML
摘要: 

将钛粉、铝粉、石墨粉和少量锡粉混合,用原位烧结技术宏量制备高纯度前驱体材料Ti3AlC2,再以浓氢氟酸为刻蚀剂进行选择性刻蚀,改变刻蚀时间宏量制备出层间距可调节的层状剥离Ti3C2。使用X射线衍射和场发射扫描电子显微镜分别表征了Ti3AlC2和Ti3C2的结构和层间距微观形貌,并对用Ti3C2制成的电极进行了电化学性能测试分析。结果表明,相比其它在相同条件下制备的电极其比容量大幅度提高,且具有良好的超级电容性能。

关键词 材料合成与加工工艺Ti3AlC2Ti3C2选择性刻蚀比容量    
Abstract

The high-purity precursor material Ti3AlC2 was prepared via in situ sintering technology with mixed powders of titanium, aluminum, graphite and a small amount of tin as raw material by changing the ratio of powders and sintering time. Then the precursor material Ti3AlC2 was subjected to selective etching with concentrated hydrofluoric acid, and finally massive material of layered Ti3C2 with adjustable layer spacing was prepared by changing the etching time. The microstructure and microscopic morphology of the layer spacing of Ti3AlC2 and Ti3C2 were characterized by X-ray diffractometer and field emission scanning electron microscopy and their electrochemical performance was comparatively assessed. Among others, the specific capacity of the present prepared electrode under the same condition is greatly improved, showing good performance of supercapacitor.

Key wordssynthesizing and processing technics for materials    Ti3AlC2    Ti3C2    selective etching    specific capacity
收稿日期: 2020-05-18     
ZTFLH:  TQ152  
基金资助:辽宁省教育厅高校基本科研项目(JQL201715404)
作者简介: 杨占鑫,男,1996年生,硕士生
图1  选择性刻蚀高纯Ti3AlC2制备层状剥离Ti3C2材料和电化学性能测试示意图
图2  烧结温度不同保温30 min的3Ti/1.2Al/1.9C样品的X射线衍射图谱、在1400℃保温30 min的3Ti/1.2Al/1.9C样品的X射线衍射图谱、烧结温度不同的3Ti/1.2Al/1.9C样品中Ti3AlC2的质量百分数以及刻蚀不同时间的Ti3C2的X射线衍射图谱
图3  将前驱体Ti3AlC2刻蚀不同时间制备的Ti3C2 的SEM照片
图4  Ti3AlC2电极和不同选择性刻蚀时间Ti3C2电极的CV曲线,在扫描速度为20 mV/s;Ti3C2-24 h电极不同扫描速度的CV曲线;Ti3AlC2和不同刻蚀时间Ti3C2电极的GCD曲线,电流密度为1 A/g;T3C2-24 h电极不同电流密度的GCD曲线;前驱体材料Ti3AlC2和不同刻蚀时间Ti3C2电极的交流阻抗图谱以及T3C2-24 h电极的长循环性能
1 Mehtab T, Yasin G, Arif M, et al. Metal-organic frameworks for energy storage devices: batteries and supercapacitors [J]. J. Energy Storage, 2019, 21: 632
2 John B. G. Energy storage materials: a perspective [J]. Energy Storage Mater., 2015, 1: 158
3 Pan S, Zhuang X, Wang B, et al. Preparation and properties of carbon coated manganese dioxide electrode materials [J]. J. Mater. Res., 2019, 7(33): 530
3 潘双, 庄雪, 王冰等. 碳包覆改性二氧化锰电极材料的制备和性能 [J]. 材料研究学报, 2019, 7(33): 530
4 Liang X, Yun J F, Xu K, et al. A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries [J]. J. Energ. Chem., 2019, 39: 176
5 Maria R, Lukatskaya, Olaha M, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide [J]. Science, 2013, 341(6153): 1502
6 Lukatskaya M R, Kota S, Lin Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides [J]. Nat. Energy, 2017, 2: 1
7 Liu Y F, Du H F, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J]. Chem. Commun., 2016, 52(4): 705
8 Wang F, Yang C H, Duan M, et al. TiO2 naonparticle modified origan-like Ti3C2 MXenes nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances [J]. Biosens. Bioeletron., 2015, 74: 1022
9 Guo J X, Peng Q M, Fu H, et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXenes by first-principles [J]. J. Phys. Chem. C, 2015, 119(36): 20923
10 Sun D D, Wang M S, Li Z Y, et al. Two-dimensional Ti3C2 as anode material for li-ion batteries [J]. Electrochem. Commun., 2014, 47: 80
11 Shi Z Q, Lv G X. Prepartion and performance of electrochemical sodium storage of two-dimension Ti3C2Tx material [J]. Journal of Tianjin Polytechnic university, 2018, 37(6): 48
11 时志强, 吕国霞. 二维层状材料Ti3C2Tx的制备及其电化学储钠性能 [J]. 天津工业大学学报, 2018, 37(6): 48
12 Michael N, Jeremy C, Boris D, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries [J]. Electtochem. Commun., 2012, 16(1): 61
13 Zhu J F, Tang W, Lu X, et al. Modification and electrochemical performance of two-dimensional Ti3C2 (MXenes) nanomaterial [M]. Beijing: Tsinghua University Press, 2018: 15
13 朱建峰, 汤唯. 二维Ti3C2(MXenes)纳米材料的改性及电化学性能研究 [M]. 北京: 清华大学出版社, 2018: 15
14 Wang L B, Zhang H, Wang B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process [J]. Electron. Mater. Lett, 2016, 12(5): 702
15 Wu Q, Li C S, Tang H, et al. Synthesis and tribological properties of laminated Ti3SiC2 crystals [J]. Cryst. Res. Technol., 2010, 45(8): 851
16 Wang H H, Sun S C, Wang D Y, et al. Fabrication of TiB2-TiC multiphase ceramics via high energy ball milling and subsequent pressureless sintering [J]. J. Mater. Res., 2013, 5(27): 489
16 王慧华, 孙树臣, 王德永等. 高能球磨结合无压烧结制备TiB2-TiC复相陶瓷 [J]. 材料研究学报, 2013, 5(27): 489
17 Michael N, Murat K, Volker P, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
18 Liu F F, Zhou A G, Chen J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties [J]. Appl. Surf. Sci., 2017, 416: 781
19 Li T F, Yao L L, Gu J J, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment [J]. Angew. Chem., 2018, 57: 1
20 Liu Q B. Preparation of cathode materials for lithium-ion battery and its performance [D]. Guangdong: South China University of Technology, 2014
20 刘全兵. 离子电池在正极材料的制备及性能研究 [D]. 广东: 华南理工大学, 2014
21 Tang H, Feng Y, Huang X C, et al. Reactive synthesis of polycrystalline Ti3AlC2 and its sintering behavior [J]. Rare Metal Mat. Eng., 2017, 46(8): 2108
22 Zhou A G, Wang C A, Hunag Y, et al. Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering [J]. J. Mater. Sci., 2003, 38(14): 3111
23 Huang F, Siffalovic P, Li B, et al. Controlled crystallinity and morphologies of 2D ruddlesden-popper perovskite films grown without anti-solvent for solar cells [J]. Chem. Eng. J., 2020, 394: 1
24 Liu F F, Zhou A G, Wang L B, et al. Synthesis and characterization of two-dimensional carbide crystal Ti2C [J]. J. Synth. Cryst., 2015, 44(9): 2456
24 刘凡凡, 周爱国, 王李波等. 二维碳化物晶体Ti2C的制备与表征 [J]. 人工晶体学报, 2015, 44(9): 2456
25 Mohammadi A V, Mojtabavi M, Caffrey N M, et al. 2D MXenes: assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities [J]. Adv. Mater., 2019, 31(8): 180
26 Peng Y Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage [J]. Energy Environ. Sci., 2016, 9(9): 2847
27 Zhang X F, Guo Y, Li Y J, et al. Preparation and tribological properties of potassium titanate-Ti3C2Tx nanocomposites as additives in base oil. Chinese Chem. Lett., 2019, 30: 502
[1] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.
[2] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[3] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[4] 王益浩, 吴琼, 李鹏飞, 杨占鑫, 张洪涛. 高比容少层MXene Ti3C2 的制备及其超级电容性能[J]. 材料研究学报, 2022, 36(3): 183-190.
[5] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[6] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[7] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[8] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[9] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[10] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[11] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[14] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[15] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.