Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 881-891    DOI: 10.11901/1005.3093.2020.199
  研究论文 本期目录 | 过刊浏览 |
变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响
姜巨福1(), 王迎2, 肖冠菲1, 邓腾1, 刘英泽1, 张颖1
1.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
2.哈尔滨工业大学机电工程学院 哈尔滨 150001
Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting
JIANG Jufu1(), WANG Ying2, XIAO Guanfei1, DENG Teng1, LIU Yingze1, ZHANG Ying1
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
Jufu JIANG, Ying WANG, Guanfei XIAO, Teng DENG, Yingze LIU, Ying ZHANG. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. Chinese Journal of Materials Research, 2020, 34(12): 881-891.

全文: PDF(30397 KB)   HTML
摘要: 

用Al-10Sr变质剂和Al-5Ti-B细化剂处理A356铝合金熔体,并结合挤压铸造和T6热处理工艺,研究变质细化与热处理对A356铝合金挤压铸造件的组织和性能的影响规律。结果表明,随着Al-10Sr变质剂加入量的增加,共晶Si的形貌由片状和长杆状变为颗粒状和蠕虫状,α-Al的晶粒尺寸先减少后增大。当Al-10Sr的加入量(质量分数)为0.3%时,挤压铸造成形件的最优抗拉强度、屈服强度和延伸率分别为221.3 MPa、104.5 MPa和10.3%。Al-10Sr变质能提高形核率、细化α-Al晶粒尺寸和改变共晶硅形貌,使铸造件的力学性能提高。随着A-5Ti-B的增加,晶粒尺寸先降后增,力学性能先增后降。Al-5Ti-B的加入量为0.6%时,最优抗拉强度、屈服强度和延伸率分别为215.6 MPa、106.6 MPa和9.0%。T6热处理(固溶540℃/4 h+时效190℃/4 h)使屈服强度和抗拉强度显著提高和延伸率降低。经过0.6% 的Al-5Ti-B细化处理,T6处理挤压铸造件的最优的抗拉强度、屈服强度和延伸率分别为297.5 MPa、239.3 MPa和8.0%。共晶硅的球化和细化、成形件成分的均匀化以及Mg2Si强化相在基体中弥散析出,是热处理后构件力学性能提高的主要原因。

关键词 材料合成与加工工艺变质细化微观组织力学性能A356铝合金挤压铸造    
Abstract

Influence of modification, refinement and heat treatment on the microstructure and mechanical properties of A356 Al-alloy components prepared by squeeze casting was investigated. The results show that with increase of Al-10Sr modification agent, the morphology of eutectic Si changed from lamellar, rod-like shape to granular and wormlike shape, and the grain size of α-Al increased first and then decreased. When 0.3% Al-10Sr modification agent was added, the optimal mechanical properties of squeeze casting components including ultimate tensile strength of 221.3 MPa, yield strength of 104.5 MPa and elongation of 10.3% were achieved. The improvement of mechanical properties can be attributed to the increase of nucleation rate, the decrease of α-Al grain size and the change of eutectic Si morphology by adding 0.3% Al-10Sr modification agent. With the increase of A-5Ti-B refiner, the α-Al grain size first decreased and then increased, but the changing trend of mechanical properties is inverse. When 0.6% Al-5Ti-B refiner was added, the optimal ultimate tensile strength, yield strength and elongation were 215.6 MPa, 106.6 MPa and 9.0%, respectively. T6 heat treatment including solid solution at 540℃ for 4 h and artificial aging at 190℃ for 4 h led to the improvement of yield strength and ultimate tensile strength, but it led to the decrease of elongation. The optimal mechanical properties such as yield strength of 239.3 MPa, ultimate tensile strength of 297.5 MPa and elongation of 8.0% were obtained for the squeeze casting component with T6 treatment and an addition of 0.6% A-5Ti-B refiner. The globularization of eutectic Si, the refinement of eutectic Si, the homogenization of composition for the prepared component and the precipitation of Mg2Si phase in α-Al matrix all lead to the improvement of mechanical properties of squeeze casting component with T6 treatment.

Key wordssynthesizing and processing technics for materials    modification and refinement    microstructure    mechanical properties    A356 aluminum alloy    squeeze casting
收稿日期: 2020-05-29     
ZTFLH:  TG249.9  
基金资助:国家重点研发计划(2019YFB2006500);国家自然科学基金(51875124)
作者简介: 姜巨福,男,1976年生,教授
Sample No.Pouring temperature/℃

Die temperature

/℃

Specific pressure

/MPa

Dwell time/sAdded master alloy

Quantity

/%

Heat treatment status
170025039830No0No T6
270025039830Al-10Sr0.1No T6
370025039830Al-10Sr0.3No T6
470025039830Al-10Sr3No T6
570025039830Al-5Ti-B0.1No T6
670025039830Al-5Ti-B0.6No T6
770025039830Al-5Ti-B3No T6
870025039830No0T6
970025039830Al-10Sr0.3T6
1070025039830Al-5Ti-B0.6T6
表1  本文的挤压铸造成形实验方案
图1  挤压铸造成形件的三维造型图、微观组织和测量力学性能取样位置
图2  加入不同量变质剂挤压铸造件的微观组织和平均晶粒尺寸
图3  加入不同量Al-10Sr变质剂制件的力学性能
图4  加入不同量Al-5Ti-B细化剂挤压铸造件的微观组织和平均晶粒直径
图5  加入不同量细化剂制件的力学性能
图6  热处理前后工程应力-工程应变曲线
图7  挤压铸造件热处理后的微观组织
图8  Al-10Sr变质剂加入量为3%制件的组织扫描能谱
图9  Al-10Sr变质剂加入量为3%制件的组织点扫描能谱
图10  挤压铸造成形件热处理后断口的形貌
图11  热处理后制件晶界的透射电镜形貌
图12  强化相透射电镜形貌和选区电子衍射斑点
1 Qi P X. Squeeze Casting [M]. Beijing: National Defense Industry Press, 1984: 1
1 齐丕骧. 挤压铸造 [M]. 北京: 国防工业出版社, 1984: 1
2 Luo S J, Jiang J F, Chen Q, et al. Forming Theory and Technology of Metal in Solid-liquid State [M]. Beijing: Science Press, 2013: 407
2 罗守靖, 姜巨福, 陈强等. 金属材料固-液成形理论与技术 [M]. 北京: 科学出版社, 2013: 407
3 Qi P X. Squeeze casting technology geared to the 21st Century [J]. Spec. Cast. Nonferrous Alloy, 1998, 4: 32
3 齐丕骧. 面向21世纪的挤压铸造技术 [J]. 特种铸造及有色合金, 1988, 4: 32
4 Luo J X. Research status and prospect of squeeze casting technology in china [J]. Journal of Dalian JiaoTong University, 2016, 37(5): 30
4 罗继相. 我国挤压铸造技术研究现状及展望 [J]. 大连交通大学学报, 2016, 37(5): 30
5 Qi P X. Present status and future of squeezing casting machine at home [J]. Spec. Cast. Nonferrous Alloy, 2010, 30 (4): 305
5 齐丕骧. 我国挤压铸造机的现状与发展 [J]. 特种铸造及有色合金, 2010, 30(4): 305
6 Yu T M, Chadwick G A. Squeeze casting of light alloys and their composites [J]. J. Mater. Process. Tech. 1996, 58: 302
7 Luo S J, Chen B G, Qi P X. Liquid Die Forging and Squeeze Casting [M]. Beijing: Chemical Industry Press, 2007: 301
7 罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术 [M]. 北京: 化学工业出版社, 2007: 301-343
8 Ghomashchi M R, Vikhrov A. Squeeze casting: an overview [J]. J. Mater. Process. Tech., 2000, 101: 1
9 Luo S J, He S Y, Wang E D, et al. Liquid Die Forging of Steel [M]. Harbin: Harbin Institute of Technology Press, 1990: 5
9 罗守靖, 何绍元, 王尔德等. 钢质液态模锻 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1990: 5
10 Rajagopal S. Squeeze casting: A review and update [J]. J. Appl. Metalworking, 1981, 1(4): 3
11 Lynch R F, Ohio T. Squeeze casting apparatus and method [P]. U S Pat, 602687, 1975
12 Britnell D J, Neailey K. Macrosegregation in thin walled castings produced via the direct squeeze casting process [J]. J. Mater. Process. Technol., 2003, 138: 306
13 Yamaguchi T U, Uchida M. Vertical die casting [P]. U S Pat, 765505, 1977
14 Luo S J, Jiang J F, Wang Y, et al. Mechanics and forming theory of liquid metal forging [J]. Trans. Nonferrous Met. Soc., 2003, 13(2): 369
15 Jiang J F, Wang Y, Chen G, et al. Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming [J]. Mater. Des.2012, 40: 541
16 Zhang P, Luo J X, SHEN A D, et al. Microstructure and mechanical properties of squeeze casting A356.2 spring seat [J]. Spec. Cast. Nonferrous Alloy, 2015, 35(5): 504
16 张鹏, 罗继相, 沈艾迪等. A356.2铝合金螺簧座挤压铸造工艺的研究 [J]. 特种铸造及有色合金, 2015, 35(5): 504
17 Xing S M, Dong Q, Qiu B, et al. Progress and prospect in squeezing casting iron-steel and its compound materials parts [J]. Spec. Cast. Nonferrous Alloy, 2017, 37(1): 38
17 邢书明, 董琦, 邱博等. 挤压铸造钢铁及其复合材料零件进展与展望 [J]. 特种铸造及有色合金, 2017, 37(1): 38
18 Gallerneault M, Durrant G, Cantor B. The squeeze casting of hypoeutectic binary Al-Cu [J]. Metall. Mater. Trans. A, 1996, 27: 4121
19 Iwamoto N, Tsuboi H, Kaneko T. Method of and system for operating squeeze plunger in die cast machine [P]. U S Pat, 301153, 1989
20 Rosso M, Peter I, Bivol C, et al. Development of industrial components by advanced squeeze casting [J]. Int. J. Mater. Form., 2010, 3(): 787
21 Hong C P, Shen H F, Lee S M. Prevention of macrodefects in squeeze casting of an Al-7Wt Pct Si alloy [J]. Metall. Mater. Trans. B.2000, 31B: 297
22 Jin C K, Kang C G. A Comparative study on the formability of aluminum bipolar plate with channels using indirect squeeze casting and stamping [J]. Int. J. Prec. Eng. Manufac. 2015, 16(7): 1233
23 Zhang G A, Wu S Y, Li Y S, et al. Liquid die forging of aluminum alloy wheel of car [J]. Forg. Stamp. Technol., 1999, 24(3): 33
23 张广安, 吴树迎, 李玉书, 李义. 轿车铝合金轮毂的液态模锻 [J].锻压技术, 1999, 24(3): 33
24 Ma C J, Chen J X, Ge S J, et al. Microstructure and mechanical properties of squeezing casting aluminum alloy wheel [J]. Spec. Cast. Nonferrous Alloy, 2014, 34(10): 1063
24 马春江, 陈玖新, 葛素静, 计国富, 邢书明. 挤压铸造重载汽车用铝合金车轮的组织及性能 [J]. 特种铸造及有色合金, 2014, 34(10): 1063
25 Tand Q B, Jiang J F, Wang Y. Comparison of mechanical properties of connecting rod of ADC12 aluminum alloy formed by two processes [J]. Hot Work Techn. 2010, 39(19): 107
25 唐全波, 姜巨福, 王迎. 两种工艺成形的ADCl2铝合金连杆的力学性能对比 [J]. 热加工工艺, 2010, 39(19): 107
26 Qu H C. Liquid die forging of aluminum alloy connecting rod of air condition compressor [J]. Die Industry, 2001, 2: 43
26 屈华昌. 空调压缩机铝合金连杆的液态模锻 [J]. 模具工业, 2001, 2: 43
27 Hu M L, Zhao M, Ji Z S, et al. Effect of Squeezing Casting Technology on Structures and Properties of Air-conditioner Swaying Tray of Automobile [J]. The Chin. J. Nonferrous Metal, 2006, 16(3): 400
27 胡茂良, 赵密, 吉泽升. 挤压铸造工艺对汽车空调器摇盘组织和性能的影响 [J]. 中国有色金属学报, 2006, 16(3): 400
28 Ren J C, Heng L Q, Wang Z Z, et al. Development of squeeze casting aluminum alloy automobile steering knuckle [J]. Spec. Cast. Nonferrous Alloy, 2017, 37(7): 735
28 任俊成, 衡俐琼, 王泽忠. 挤压铸造铝合金转向节开发 [J]. 特种铸造及有色合金, 2017, 37(7): 735
29 Wang S Z, Ji Z S, Sugiyama S, et al.Segregation behavior of ADC12 alloy differential support formed by near-liquidus squeeze casting [J]. Mater. Des., 2015, 65: 591
30 Sun J, Xu S X, Tang J. Development of squeeze casting technology for manufacturing aluminum alloy subframe for automobile [J]. Foundry, 2015, 64(1): 17
30 孙珏, 许善新, 汤杰. 汽车铝合金副车架挤压铸造工艺设计和产品开发 [J]. 2015, 164(1): 17
31 Yang Q, Jiang Y F, Dai Y C, et al. Microstructure and mechanical properties of aluminum alloy sub-frame by squeeze casting process [J]. Spec. Cast. Nonferrous Alloy, 2016, 36(4): 376
31 杨青, 姜银方, 戴亚春. 挤压铸造铝合金副车架的显微组织与力学性能 [J]. 特种铸造及有色合金, 2016, 36(4): 376
32 Li Y F, Yu Z L, Shi F, et al. Effects of squeeze casting process on microstructure and properties of automobile control arm [J]. Spec. Cast. Nonferrous Alloy, 2018, 38(8): 864
32 李宇飞, 余振龙, 石飞. 挤压铸造工艺对汽车控制臂铸件组织及性能的影响 [J]. 特种铸造及有色合金, 2018, 38(8): 864
33 Wang C S, Li H W, Chen L H, et al. Research on liquid-state forging of new and high strength-toughness aluminum alloy [J]. New Techn. New Process, 2013, 7: 88
33 王长顺, 李宏伟, 陈利华. 特种车辆新型高强韧铝合金负重轮液态模锻工艺成型研究 [J]. 新技术新工艺, 2013, 7: 88
34 Miao L L, Wang C S, Zhang X, et al. Research and development trend of liquid forging compound forming technology [J]. Foundry Technol., 2015, 36(4): 989
34 苗莉莉, 王长顺, 张新. 液态模锻复合成形技术研究进展和发展趋势 [J]. 铸造技术, 2015, 36(4): 989
35 Fan C H, Chen Y F, Chen H, et al. Effects of pressure and dual refiner on microstructure of the squeeze casting hollow Al-Zn-Mg-Cu alloy drive shaft [J]. Spe. Cast. Nonferrous Alloy, 2012, 32(7): 633
35 范才河, 陈艺锋, 陈辉. 比压和双细化剂对挤压铸造Al-Zn-Mg-Cu合金组织的影响 [J]. 特种铸造及有色合金, 2012, 32(7): 633
36 Li H B, Liu H L, Li T S, et al. Influence of modificator on mechanical properties of liquid forging aluminum alloy [J]. J. Jiamusi Univer. (Natural Science Edition), 2009, 27(3): 405
36 李洪波, 刘洪丽, 李天生. 变质剂对液态模锻铝合金力学性能的影响 [J]. 佳木斯大学学报(自然科学版), 2009, 27(3): 405
37 Li T S, Xu H, Li H B, et al. Influence of different modifications on structure and properties of liquid state forging Al-Zn-Mg alloy [J]. Hot Work. Techn. 2008, 37(23): 22
37 李天生, 徐慧, 李洪波. 不同变质剂对液态模锻Al-Zn-Mg-合金组织和性能的影响 [J]. 热加工工艺, 2008, 37(23): 22
38 Wang J, Hou L Q, Qi Z W, et al. Heat treatment of squeezing casting 2A50 wrought aluminum alloy [J]. Spec. Cast. Nonferrous Alloy, 2010, 30(4): 339
38 王健, 侯立群, 齐志望.挤压铸造2A50铝合金的热处理工艺 [J]. 特种铸造及有色合金, 2010, 30(4): 339
39 Li L. Study on squeeze casting processing and heat treatment of 6061 aluminum alloy bracket [D]. Harbin: Harbin University of Science and Technology, 2019
39 李鲁. 6061铝合金支架挤压铸造及热处理工艺研究 [D]. 哈尔滨: 哈尔滨理工大学, 2019
40 Standarization Administration of China. Heat treatment of cast aluminum alloys [S]. The State Standard of the People's Republic of China. , 2010
40 中国国家标准化委员会. 铸造铝合金热处理 [S]. 中华人民共和国国家标准. , 2010
41 Jiang F, Suo Z Y, Wang D Y, et al. Effect of different Sr contents on microstructure and mechanical properties of A356 alloy [J]. Foundry, 2018, 67(11): 1012.
41 姜峰, 索忠源, 王德禹等. 不同Sr含量变质对A356合金组织及力学性能的影响 [J]. 铸造, 2018, 67(11): 1012
42 Sosenushkin E N, Frantsuzova L S, Kozlova E M. Effect if pressure and temperature factors on the solidification of cast iron and its structure in liquid forge [J]. Metal Sci. Heat Treat. 2015, 57(5): 309
43 Batyshev K A. Casting of aluminum alloys with pressure crystallization. Part 1 [J]. Metal Sci. Heat Treat., 2012, 53(9): 463
44 Cui Y, Fan X Y, Wang Z F, et al. Modification effect of Al-10Sr master alloy on A356 alloy [J]. Hot Working Techn., 2010, 39(19): 24
44 崔勇, 范学义, 王志峰. Al-10Sr对A356合金变质效果的研究 [J]. 热加工工艺, 2010, 39(19): 24
45 Samuel A M, Doty H W, Valtierra S, et al. Effect of grain refining and Sr-modification interactions on the impact toughness of Al-Si-Mg cast alloys [J]. Mater. Des., 2014, 56: 264
46 Rao A A, Murty B S, Chakraborty M. Role of zirconium and impurities in grain refinement of aluminiumwith AI-Ti-B [J]. Mater. Sci. Techn., 1997, 13(9): 769
47 Qin X X, Yang Y Y, Feng S K, et al. The effect of Al-5Ti-B refiner microstructure of A356 alloy [J]. Mater. Res. Appl., 2017, 11(1): 9
47 秦晓雄, 杨运宇, 冯绍凯. Al-5Ti-B细化剂对A356合金微观组织的影响 [J]. 材料研究与应用, 2017, 11(1): 9
48 Ren J, Tao Q G, Ma Y. Development and situation of refinement mechanism and grain refinement of Al-Ti-B alloy [J]. Foundry Technol., 2007, (1): 69
48 任峻, 陶钦贵, 马颖. Al-Ti-B合金晶粒细化剂及细化机理的发展与现状 [J]. 铸造技术, 2007, (1): 69
49 Bai Y F. Research on microstructure and property of slow shot die aluminum alloy casting [D]. Guangzhou: South China University of Technology, 2010
49 白砚飞. 慢压射铝合金压铸件组织与性能的研究 [D]. 广州: 华南理工大学, 2010
50 Tong S K, Shang S Z, Sun X Y, et al. Properties of A356.2 aluminum alloy wheel spokes [J]. Spec. Cast. Nonferrous Alloy, 2012, 32(11): 1030
50 童胜坤, 尚淑珍, 孙秀云等. 低压铸造A356.2铝合金轮毂轮辐的性能 [J]. 特种铸造及有色合金, 2012, 32(11): 1030
51 Peng J H,Tang X L. Effect of heat treatment on microstructure and tensile properties of A356 alloys [J]. Trans. Nonferrous Met. Soc. China, 2011, 21(9): 1950
52 Liu B Y, Sun Y. Effect of heat treatment on microstructure and performance of aluminum silicon casting alloy [J]. Autom. Technol., 2004, 4: 34
52 柳秉毅, 孙瑜. 热处理对铝硅铸造合金组织与性能的影响 [J]. 汽车技术, 2004, 4: 34
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[5] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[6] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[12] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[13] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[15] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.