Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 50-56    DOI: 10.11901/1005.3093.2019.293
  研究论文 本期目录 | 过刊浏览 |
A-π-D-π-A型吲哚类染料敏化剂的光电特性
鲁效庆(),张全德,魏淑贤
中国石油大学(华东) 青岛 266580
Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers
LU Xiaoqing(),ZHANG Quande,WEI Shuxian
China University of Petroleum, Qingdao 266580, China
引用本文:

鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
Xiaoqing LU, Quande ZHANG, Shuxian WEI. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. Chinese Journal of Materials Research, 2020, 34(1): 50-56.

全文: PDF(3374 KB)   HTML
摘要: 

基于密度泛函理论(DFT)和含时密度泛函理论(TD-DFT),通过调整分子骨架结构设计了一系列A-π-D-π-A(受体-π桥-供体-π桥-受体)型吲哚类染料敏化剂,系统研究其光电转化和电子传输微观机理,以论证A-π-D-π-A型染料分子骨架结构的合理性并筛选出高性能吲哚类染料敏化剂。结果表明,基于A-π-D-π-A型骨架结构的吲哚类纯有机染料敏化剂比具有传统D-π-A型骨架结构的敏化剂整体性能更佳,具有适宜的能级结构和轨道电子分布、拓宽的光谱吸收范围、较高的光捕获效率和分子内电子转移(IET)性能。同时,π桥缺电子性能的增强进一步提高了A-π-D-π-A型吲哚类纯有机染料敏化剂的性能。

关键词 材料科学基础学科吲哚类染料敏化剂密度泛函理论光电转化电子转移    
Abstract

Based on the concept of modification of molecular skeleton structure, a series of (acceptor-π-donor-π-acceptor) A-π-D-π-A type indole-based metal-free organic dye sensitizers were designed, and their photoelectric conversion behavior and the relevant electronic transmission mechanisms were theoretically investigated by using density functional theory and the time-dependent density functional theory. Results show that compared with the traditional D-π-A molecular skeleton structure the overall performance of A-π-D-π-A type indole-based organic dye sensitizers was significantly improved in terms of the appropriate energy level structure and orbital electron distribution, broadened spectral absorption coverage range, improved light-harvesting efficiency and enhanced IET performance. At the same time, it should be noted that the enhancement of electron-deficient properties of the π-bridge could further enhance the properties of A-π-D-π-A type indole-based metal-free organic dye sensitizers.

Key wordsfoundational discipline in materials science    indole-based dye sensitizers    density functional theory    photoelectric conversion    electronic transmission
收稿日期: 2019-06-10     
ZTFLH:  TK519  
基金资助:山东省自然科学基金(ZR2017MA024);山东省自然科学基金(ZR2019MEM005);中央高校基本科研业务费专项资金(18CX02042A);中央高校基本科研业务费专项资金(18CX07002A);中央高校基本科研业务费专项资金(18CX05011A);研究生创新项目(YCX-2019092)
作者简介: 鲁效庆,男,1979年生,博士
图1  本文设计的染料敏化剂的分子结构示意图
图2  纯有机染料敏化剂的部分前线分子轨道电子分布图
图3  设计的染料敏化剂前三个分子轨道能级及能级差ΔH-L
图4  A-π-D-π-A型纯有机染料敏化剂的模拟吸收光谱
Dyesλmax/nmEV/eVfLHEmaxRLHECompositions
QX02462.12.681.40196.0%1.00H→L(62%)
1463.62.672.79399.9%1.04H→L(56%), H→L+1(11%)
2476.22.603.43399.9%1.04H→L(53%), H→L+1(13%)
3544.02.283.46699.9%1.04H→L(55%), H-1→L+1(12%)
4462.82.753.04999.9%1.04H-1→L(54%), H-1→L+1(13%)
5469.12.653.86299.9%1.04H-1→L(56%), H-1→L+1(10%)
6524.52.363.89399.9%1.04H-1→L(53%),H-1→L+1(11%)
表1  纯有机染料最大吸收峰对应光跃迁的垂直激发能(EV, eV)、吸收强度(?)、相对轨道贡献以及最大光捕获效率和相对光捕获效率
图5  所有纯有机染料敏化剂的模拟LHE光谱
图6  染料敏化剂基态与激发态之间的电子密度差分图
Dyesλ/nmqET/edET/nmH/nmt/nmλv/eVkET/fs-1
QX02462.10.9710.59970.43960.16010.9353.08
1463.60.9920.79200.65970.13230.9283.15
2476.21.0430.81510.69930.11580.9563.00
3544.01.1620.87890.76780.11110.9493.04
4462.81.0000.75090.61760.13330.9652.97
5469.11.0700.75750.63620.12130.9203.28
6524.51.1720.79100.67951.1150.09143.48
表2  纯有机染料敏化剂的IET参数
[1] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells [J]. Chemical Reviews, 2010, 110(11): 6595
[2] Yella A, Mai C L, Zakeeruddin S M, et al. Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: The role of benzene spacers [J]. Angewandte Chemie International Edition, 2014, 53(11): 2973
[3] Yang J, Ganesan P, Teuscher J, et al. Influence of the donor size in D-π-A organic dyes for dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2014, 136(15): 5722
[4] Zhou N, Prabakaran K, Lee B, et al. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2015, 137(13): 4414
[5] Yao Z, Zhang M, Wu H, et al. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2015, 137(11): 3799
[6] Huckaba A J, Yella A, Brogdon P, et al. A low recombination rate indolizine sensitizer for dye-sensitized solar cells [J]. Chemical Communications, 2016, 52(54): 8424
[7] Qian X, Shao L, Li H, et al. Indolo [3, 2-b] carbazole-based multi-donor-π-acceptor type organic dyes for highly efficient dye-sensitized solar cells [J]. Journal of Power Sources, 2016, 319: 39
[8] Zhu W, Wu Y, Wang S, et al. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response [J]. Advanced Functional Materials, 2011, 21(4): 756
[9] Hailu Y M, Nguyen M T, Jiang J C. Effects of the terminal donor unit in dyes with D-D-π-A architecture on the regeneration mechanism in DSSCs: a computational study [J]. Physical Chemistry Chemical Physics, 2018, 20(36): 23564
[10] Zhang M D, Xie H X, Ju X H, et al. D-D-π-A organic dyes containing 4, 4'-di (2-thienyl) triphenylamine moiety for efficient dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics, 2013, 15(2): 634
[11] Liu X, Cao Z, Huang H, et al. Novel D-D-π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells [J]. Journal of Power Sources, 2014, 248: 400
[12] Dai X X, Feng H L, Huang Z S, et al. Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance [J]. Dyes and Pigments, 2015, 114: 47
[13] Murali M G, Wang X, Wang Q, et al. New banana shaped A-D-π-D-A type organic dyes containing two anchoring groups for high performance dye-sensitized solar cells [J]. Dyes and Pigments, 2016, 134: 375
[14] Andersson M P, Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G (d, p) [J]. The Journal of Physical Chemistry A, 2005, 109(12: 2937
[15] Curtiss L A, Raghavachari K, Redfern P C, et al. Investigation of the use of B3LYP zero-point energies and geometries in the calculation of enthalpies of formation [J]. Chemical Physics Letters, 1997, 270(5-6): 419
[16] Yanai T, Tew D P, Handy N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) [J]. Chemical Physics Letters, 2004, 393(1-3): 51
[17] Petersson G A, Tensfeldt T G, Montgomery J A. A complete basis set model chemistry. III. The complete basis set—quadratic configuration interaction family of methods [J]. The Journal of Chemical Physics, 1991, 94(9): 6091
[18] Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions [J]. The Journal of Chemical Physics, 2001, 115(10): 4708
[19] Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J]. The Journal of Physical Chemistry A, 1998, 102(11): 1995
[20] Jacquemin D, Wathelet V, Perpete E A, et al. Extensive TD-DFT benchmark: singlet-excited states of organic molecules [J]. Journal of Chemical Theory and Computation, 2009, 5(9): 2420
[21] Jacquemin D, Perpete E A, Scuseria G E, et al. TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids [J]. Journal of Chemical Theory and Computation, 2008, 4(1): 123
[22] Le Bahers T, Pauporté T, Scalmani G, et al. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11276
[23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision D. 01 [CP]. New York: Gaussian Inc, Wallingford C T, 2009
[24] Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580
[25] Santhanamoorthi N, Lo C M, Jiang J C. Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study [J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 524
[26] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. Journal of the American Chemical Society, 1993, 115(14): 6382
[27] He L J, Chen J, Bai F Q, et al. The influence of a dye-TiO2 interface on DSSC performance: a theoretical exploration with a ruthenium dye [J]. RSC Advances, 2016, 6(85): 81976
[28] Lu T F, Li W, Bai F Q, et al. Anionic ancillary ligands in cyclometalated Ru (II) complex sensitizers improve photovoltaic efficiency of dye-sensitized solar cells: insights from theoretical investigations [J]. Journal of Materials Chemistry A, 2017, 5(30): 15567
[29] Nalwa H. S. Handbook of Advanced Electronic and Photonic Materials and Devices: Conducting Polymers [M]. USA: Academic Press, 2001
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 刘裕, 梁志奇, 赵崧, 常春蕊. 碳纳米管掺杂影响液晶物理参数与显示性能的实验及第一性原理计算[J]. 材料研究学报, 2022, 36(6): 425-434.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 王军凯, 张远卓, 李赛赛, 葛胜涛, 宋健波, 张海军. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理[J]. 材料研究学报, 2018, 32(10): 767-774.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.