Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 909-917    DOI: 10.11901/1005.3093.2017.403
  研究论文 本期目录 | 过刊浏览 |
三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响
马志军(), 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩
辽宁工程技术大学矿业学院 阜新 123000
Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite
Zhijun MA(), Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN
College of Mining, Liaoning Technical University, Fuxin 123000, China
引用本文:

马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
Zhijun MA, Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN. Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite[J]. Chinese Journal of Materials Research, 2017, 31(12): 909-917.

全文: PDF(4560 KB)   HTML
摘要: 

应用水热法将Co2+、Mn2+和Cu2+ 掺杂到纳米镍锌铁氧体粉末中,使用XRD、TEM和VNA等手段对其进行表征和分析,研究了掺杂不同金属离子对样品的粒度、形貌、电磁损耗性能以及吸收性能的影响。采用水热法制备纳米钴镍锌铁氧体纯相,以提高Co2+的含量。结果表明:掺杂后纳米镍锌铁氧体颗粒的结构由球形转变为不规则四边形,平均粒径增加到35~60 mn。掺杂Co2+后,晶格常数由0.8352增加到0.8404。掺杂Co2+改变了反射率与频率的关系曲线中吸收峰的位置,增大了吸收器的带宽,提高了材料的低频吸波性能。Mn2+的掺杂比例影响晶格常数的大小,但是纳米晶粒容易团聚,并且没有提高电磁损耗吸波性能反而降低。掺杂Cu2+仍然出现团聚,当掺杂量为0.15(原子分数)时吸波性能较为优异。

关键词 材料科学基础学科铁氧体水热法吸波性能    
Abstract

Powder of nano Ni-Zn ferrite was doped with Co2+, Mn2+ and Cu2+ respectively with hydrothermal method, which then was characterized by means of XRD, TEM, and VNA in terms of the doping effect on the particle size, morphology, and electromagnetic wave absorption performance of the doped powders. Meanwhile, plain nanometer Co-Ni-Zn ferrite was also prepared by hydrothermal method for varying Co2+ content. Results show that after doping, the particle morphology changed from spherical one to irregular quadrilateral one with the average particle size 35~60 nm. The lattice constant also increases from 0.8404 to 0.8352 nm for Co2+ doping. The Co2 + doping can change the position of the absorption peaks, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequencies. The doping ratio of Mn2+ can affect the lattice constant of the nano Ni-Zn ferrite, but nano particles are easy to agglomerate, thus Mn2+doping exhibited negative effect on the absorbance performance. For the doping of Cu2+, particles are still apt to agglomerate, however, with a dopant dose of 0.15Cu2+(atomic fraction), the absorbing performance of nano Ni-Zn ferrite powder became better.

Key wordsfoundation discipline in materials science    ferrite hydrothermal method    microwave absorbing properties
收稿日期: 2017-07-03     
ZTFLH:  TM277  
基金资助:国家自然科学基金(51372108)
作者简介:

作者简介 马志军,男,1969年生,博士

图1  纳米镍锌铁氧体工艺流程图
图2  不同Co2+含量样品的XRD图
图3  不同Co2+含量制备样品的透射电镜图
图4  Ni0.6Zn(0.4-x)CoxFe2O4样品tanδ与频率的关系曲线
Structural formula 2θ /(°) a /nm (311) Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Co0.05Fe2O4 35.53 0.8360 0.2362 411.33 34.94
Ni0.6Zn0.30Co0.10Fe2O4 35.49 0.8362 0.1968 460.33 41.93
Ni0.6Zn0.25Co0.15Fe2O4 35.44 0.8373 0.1680 555.33 49.12
Ni0.6Zn0.20Co0.20Fe2O4 35.58 0.8381 0.1574 499.67 52.44
Ni0.6Zn0.15Co0.25Fe2O4 35.34 0.8404 0.1378 487.33 59.86
表1  铁氧体的组分和结构参数
图5  Ni0.6Zn(0.4-x)CoxFe2O4样品反射率与频率的关系曲线
图6  不同Mn2+含量制备样品的XRD图
图7  不同Mn2+含量制备样品的透射电镜图
Structural formula 2θ /(°) a /nm (311)Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Mn0.05Fe2O4 35.61 0.8354 0.3023 346.33 27.31
Ni0.6Zn0.30Mn 0.10Fe2O4 35.58 0.8362 0.2833 360.33 29.14
Ni0.6Zn0.25Mn 0.15Fe2O4 35.24 0.8382 0.2520 488.00 32.72
Ni0.6Zn0.20Mn 0.20Fe2O4 35.49 0.8440 0.2475 571.67 33.34
Ni0.6Zn0.15Mn 0.25Fe2O4 35.44 0.8395 0.2046 574.67 40.34
表2  铁氧体的组分和结构参数
图8  Ni0.6Zn(0.4-x)MnxFe2O4样品tanδ与频率的关系曲线
图9  Ni0.6Zn(0.4-x)MnxFe2O4样品反射率与频率的关系曲线
图10  不同Cu2+含量制备样品的XRD图
Structural formula 2θ /(°) a /nm (311)Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Cu0.05Fe2O4 35.51 0.8365 0.1384 658.67 59.63
Ni0.6Zn0.30Cu0.10Fe2O4 35.51 0.8370 0.1578 718.00 52.30
Ni0.6Zn0.25Cu0.15Fe2O4 35.56 0.8380 0.1774 654.33 46.53
Ni0.6Zn0.20Cu0.20Fe2O4 35.54 0.8380 0.1971 532.67 41.87
Ni0.6Zn0.15Cu0.25Fe2O4 35.45 0.8390 0.2542 496.67 32.46
表3  铁氧体的组分和结构参数
图11  不同Cu2+含量制备样品的透射电镜图
图12  Ni0.6Zn(0.4-x)CuxFe2O4样品的tanδ与频率的关系曲线
图13  Ni0.6Zn(0.4-x)CuxFe2O4样品反射率与频率的关系曲线
[1] Zhang Y, Xue X X.Effect of doping rare-earth oxide on microwave absorbing properties of Ni-Zn Ferrite/Al-alloy foams[J]. J. Chin. Rare Earth Soc., 2009, 27: 52(张瑜, 薛向欣. 稀土氧化物对Ni-Zn铁氧体/泡沫铝吸波性能的影响[J]. 中国稀土学报, 2009, 27: 528)
[2] He H H, Deng L W.New progress was made in the study of nanomagnetic absorbing materials[J]. Funct. Mater. Inf., 2005, 2(2): 8(何华辉, 邓联文. 纳米磁性吸波材料研究新进展[J]. 功能材料信息, 2005, 2(2): 8)
[3] Wang J H, Liu Y C, Liu D C, et al.Effect of electromagnetic field strength on Ni0.35Zn0.65Fe2O4 as performed by combustion synthesis[J]. J. Magn. Magn. Mater., 2009, 321: 3646
[4] Zheng S F, Xiong G X, Huang H Q, et al.Study on relation of morphology, properties and preparations of ferrites[J]. Mater. Rev., 2009, 12(23): 26(郑淑芳, 熊国宣, 黄海清等. 铁氧体制备、形貌与性能的关系研究[J]. 材料导报, 2009, 12(23): 26)
[5] Zhao X M, Liu Y J.Dielectric properties of ferrite/silicon carbide/graphite Three-layer composite coating materials[J]. J. Mater. Eng., 2017, 45(1): 33(赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33)
[6] Zhao H T, Zhang Q, Liu R P, et al.Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. J. Mater. Eng., 2016, 44(1): 103(赵海涛, 张强, 刘瑞萍等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44(1): 103)
[7] Ramesh S, Sekhar B C, Rao P S V S, et al. Microstructural and magnetic behavior of mixed Ni-Zn-Co and Ni-Zn-Mn ferrites[J]. Ceram. Int., 2014, 40: 8729
[8] Zhao H T, Wang Q, Liu R P, et al.Synthesis and characterization of MnZn ferrite at low temperature[J]. J. Mater. Eng., 2016, 44(11): 73(赵海涛, 王俏, 刘瑞萍等. 锰锌铁氧体的低温合成及表征 [J]. 材料工程, 2016, 44(11): 73)
[9] Xiong Z, Liu L, Hu H, et al.Influence of ion doping on electromagnetic property of W-type Ba-ferrite[J]. J. Mater. Sci. Eng., 2013, 31: 664(熊征, 刘棱, 胡辉等. 离子掺杂对W型钡铁氧体电磁特性的影响[J]. 材料科学与工程学报, 2013, 31: 664)
[10] Gama A M, Rezende M C, Dantas C C.Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials[J]. J. Magn. Magn. Mater., 2011, 323: 2782
[11] Shinde T J, Gadkari A B, Vasambekar P N.Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites[J]. J. Magn. Magn. Mater., 2013, 333: 152
[12] Kumar S, Kumar P, Singh V, et al.Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals[J]. J. Magn. Magn. Mater., 2015, 379: 50
[13] Huo J Z, Wei M Z.Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method[J]. Mater. Lett., 2009, 63: 1183
[14] Zhong Z F, Li Q, Zhang Y L, et al.Synthesis of nanocrystalline Ni-Zn ferrite powders by refluxing method[J]. Powder Technol., 2005, 155: 193
[15] Peng S.Preparation and characterization of body performance of nickel zinc by hydrothermal method[D]. ChangSha:Central South University, 2007(彭穗. 水热法制备镍锌铁氧体及性能表征[D]. 长沙: 中南大学, 2007)
[16] Chen Y Y, Shen J H,Kong W Q, et al.Preparation and electromagnetic loss properties of nickel-zinc ferrite/expanded graphite/polyaniline composites[J]. Chinese Journal of Inorganic Chemistry,2015, 31(2): 243(陈瑶瑶, 沈俊海, 孔卫秋等. 镍锌铁氧体/膨胀石墨/聚苯胺复合物的电磁损耗性能[J]. 无机化学学报, 2015, 31(2): 243)
[17] Li Q Q, Meng M N, Wang Q, et al.Research progress in preparation of ferrite wave-absorbing materials[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 125(李倩茜, 孟美娜, 王琼等. 铁氧体吸波材料的制备方法研究进展[J]. 武汉工程大学学报, 2016, 38(2): 125)
[18] Deng N, Zhou L, Peng X L, et al.Preparation and characterization of nickel-zinc ferrites by a solvothermal method[J]. Rare Metal Mater. Eng., 2015, 44: 2126
[19] Wang H W, Kung S C.Crystallization of nanosized Ni-Zn ferrite powders prepared by hydrothermal method[J]. J. Magn. Magn. Mater., 2004, 270: 230
[20] Aphesteguy J C, Damiani A, DiGiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites[J]. Physica B, 2009, 404: 2713
[21] Wang S F, Hsu Y F, Chou K M, et al.Effects of co-dopants on the magnetic properties of Ni-Zn ferrites[J]. J. Magn. Magn. Mater., 2015, 374: 402
[22] Xie Y Y.Preparation of Ni-Zn ferrite nano-composites,magnetic and microwave absorption properties[D]. Hefei: Anhui University, 2012(谢延玉. 镍锌铁氧体纳米复合材料的制备、磁性能与微波吸收特性[D]. 合肥: 安徽大学, 2012)
[23] Xia Z G, Liu Y.Progress in the application of surfactants in the science of nanometer materials[J]. Chemical Reagents, 2005, 27(4): 207(夏志国, 刘云. 表面活性剂在纳米材料科学中的应用[J]. 化学试剂, 2005, 27(4): 207
[24] Huan F, Xie Z G, Chen J W, et al.Research progress of low frequency wave absorption materials[J]. Materials Review, 2014, 28(1): 17(宦峰, 谢国治, 陈将伟等. 低频吸波材料研究进展[J]. 材料导报, 2014, 28(1): 17)
[25] Chen T, Li T H, Li S S, et al.Research progress of wave absorption materials[J]. Materials Review, 2011, 25(15): 50(程涛, 李铁虎, 李莎莎等. 吸波材料的研究进展[J]. 材料导报, 2011, 25(15): 50)
[26] Chang C B.Studies on the preparation and microwave absorbing properties of Ni(0.5)Zn(0.5)Fe2O4 ferrite-based nanocomposite materials[D]. Taiyuan: North University of China, 2011(常传波. Ni(0.5)Zn(0.5)Fe2O4 铁氧体基纳米复合材料的制备及其吸波性能研究[D]. 太原: 中北大学, 2011)
[27] Azhagushanmugam S J, Suriyanarayanan N, Jayaprakash R.Synthesis and characterization of nanocrystalline Ni(0.6) Zn(0.4) Fe2O4 spinel ferrite magnetic material[J]. Phys. Proc., 2013, 49: 44
[28] Alvarez G, Montiel H, Barron J F, et al.Yafet-Kittel-type magnetic ordering in Ni0.35Zn0.65Fe2O4 ferrite detected by magnetosensitive microwave absorption measurements[J]. J. Magn. Magn. Mater., 2010, 322: 348
[29] Ramesh S, Sekhar B C, Rao P S V S, et al. Microstructural and magnetic behavior of mixed Ni-Zn-Co and Ni-Zn-Mn ferrites[J]. Ceram. Int., 2014, 40: 8729
[30] Weng X Y, Zhang Q, Wang J C, et al.Absorption properties of composite materials for the encapsulation of Nano- ferroferric oxide in mesoporous materials[J]. Curr. Org. Chem., 2016, 20: 1143
[31] Chen X G, Ye Y, Cheng J P.Recent progress in electromagnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26(5): 449(陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5): 449)
[32] Zhuang J, Chen X P, Chi Y H, et al.Synthesis by solid state reaction and electromagnetic loss property of nanometer Ni0.5Zn0.5Fe2O4 ferrite[J]. Function Materials, 2006, 1(37): 43(庄稼, 陈学平, 迟燕华等. 纳米Ni0.5Zn0.5Fe2O4铁氧体的制备及电磁损耗特性研究[J]. 功能材料, 2006, 1(37): 43)
[33] Liu J Y.Preparation and formation mechanism of nanometer-sized zinc oxide by homogeneous precipitation[D]. Changsha: Central South University, 2004(刘景亚. 纳米氧化锌均匀沉淀法制备及理论研究[D]. 长沙:中南大学, 2004)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[4] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 332-342.
[5] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
[7] 李万喜, 杜意恩, 郭芳, 陈勇强. CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究[J]. 材料研究学报, 2021, 35(4): 302-312.
[8] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[9] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[10] 刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能[J]. 材料研究学报, 2020, 34(8): 584-590.
[11] 王芳, 周宝玉, 冯伟, 雷家柳, 姜玉凤, 王琦迪. 耐磨铝基超疏水材料的制备及其动态冷凝行为[J]. 材料研究学报, 2020, 34(4): 277-284.
[12] 秦艳利,杨艳,赵鹏羽,刘振宇,倪丁瑞. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能[J]. 材料研究学报, 2020, 34(2): 92-100.
[13] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[14] 唐锦, 李丹, 秦健春, 曾纪术, 何浩, 李益民, 刘晨. Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8)的微观结构和磁性[J]. 材料研究学报, 2020, 34(12): 915-920.
[15] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.