Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 809-814    DOI: 10.11901/1005.3093.2019.196
  研究论文 本期目录 | 过刊浏览 |
氦离子辐照下钨纳米丝的自保护行为
吴良,范红玉(),倪维元(),许洋,鲍森,张雨薇,周思倩,牛金海
大连民族大学物理与材料工程学院 大连 116600
Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation
WU Liang,FAN Hongyu(),NI Weiyuan(),XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai
School of Physics and Material Engineering, Dalian Minzu University, Dalian 116600, China
引用本文:

吴良,范红玉,倪维元,许洋,鲍森,张雨薇,周思倩,牛金海. 氦离子辐照下钨纳米丝的自保护行为[J]. 材料研究学报, 2019, 33(11): 809-814.
Liang WU, Hongyu FAN, Weiyuan NI, Yang XU, Sen BAO, Yuwei ZHANG, Siqian ZHOU, Jinhai NIU. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation[J]. Chinese Journal of Materials Research, 2019, 33(11): 809-814.

全文: PDF(1809 KB)   HTML
摘要: 

采用低能量(200 eV)大流强的He+辐照多晶钨材料,辐照温度为1023 K和1373 K,辐照剂量为1.0×1025~1.0×1026 ions/m2。用称重、扫描电子显微镜、导电原子力显微镜等手段分析辐照后钨材料的质量损失、表面形貌和内表面缺陷分布,研究了刻蚀速率与表面形貌的关系。结果表明,具有粗糙钨纳米丝表面的钨样品刻蚀速率只有平滑表面的30%。其原因是,在大流强He+辐照下钨表面纳米丝的形成阻碍钨原子的溅射。这也意味着,钨纳米丝表面的形成可作为钨材料的自保护结构层,抑制ITER相关辐照下的强刻蚀。

关键词 金属学纳米钨丝辐照自保护    
Abstract

Polycrystalline tungsten (W) plate has been irradiated with low-energy (200 eV) and large-flux He+ with the fluences of 1.0×1025-1.0×1026 ions/m2 at elevated temperatures of 1023 K and 1373 K in a vacuum chamber of 30 Pa. The mass loss, surface morphology and defects distribution of irradiated W plate were characterized by means of weighing method, scanning electron microscope and conductive atomic force microscope. The results show that the erosion rate of cellular- or nano-fuzz-like areas is lower than 30% of that for the smooth areas on W plate surface. W nano-fuzz can keep the sputtered W atoms from escaping from the surface during large-flux He+ irradiation. The W nano-fuzz can act as a self-protective barrier on W-surface against the strong surface erosion under ITER relevant He+ irradiation conditions.

Key wordsmetallography    tungsten nano-filaments    irradiation    self-protection
收稿日期: 2019-04-12     
ZTFLH:  TG14  
基金资助:国家自然科学基金(11405023);国家自然科学基金(21573035);辽宁省自然科学基金(20180510006);大连市青年科技之星(2017RQ149);国家级大学生创新创业训练(G201912026057);大连民族大学“太阳鸟”学生科研项目(2019287)
作者简介: 吴 良,男,1997年生,本科生
图1  温度为1023 K时不同He+剂量辐照后钨样品表面的SEM照片
图2  温度为1373 K时不同的He+剂量辐照后钨样品表面的SEM照片
图3  温度为1373 K时 He+辐照剂量为1.0×1026 ions/m2时钨样品截面的SEM照片和蜂窝层或钨纳米丝层的厚度与辐照剂量的关系
图4  用导电原子力显微镜分析辐照温度为1023 K时不同He+剂量辐照后钨表面的形貌和缺陷电流分布图像
图5  W的质量损失和溅射产额与He+剂量的关系
图6  W纳米丝层的自保护机制示意图
[1] Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
[2] Liu L, Liu D P, Fan H Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
[3] Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442: S267
[4] Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
[5] Li C, Greuner H, Yuan Y, et al. Effects of temperature on surface modification of W exposed to He particles [J]. J. Nucl. Mater., 2014, 455: 201
[6] Nishijima D, Baldwin M J, Doerner R P, et al. Sputtering properties of tungsten ‘fuzzy’ surfaces [J]. J. Nucl. Mater., 2011, 415: S96
[7] Ueda Y, Coenen J W, Temmerman G D, et al. Research status and issues of tungsten plasma facing materials for ITER and beyond [J]. J. Fusion Eng. Des., 2014, 89: 901
[8] Yang Q, You Y W, Liu L, et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation [J]. J. Sci. Rep., 2015, 5: 10959
[9] Fan H, Yang D, Sun L, et al. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy [J]. J. Nucl. Instrum. Meth. B., 2013, 312: 90
[10] Yang M, Fan H Y, Xie X D, et al. Effect of high energy W6+ pre-implantation on surface microstructure of tungsten irradiated by low-energy hydrogen ions [J]. Chinese Journal of Materials Research, 2016, 30(4): 277
[10] (杨 铭, 范红玉, 解晓东, 郭一鸣, 刘云鹤, 李 坤. 高能W6+预辐照对钨表面微结构的影响 [J]. 材料研究学报, 2016, 30(4): 277)
[11] Temmerman G De, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438: S78
[12] Wu Y F, Ni W Y, Fan H Y, et al. Effects of He+ energy and irradiation temperature on W sputtering yields under fusion-relevant conditions [J]. J. Nucl. Mater., 2016, 470: 164
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[4] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[6] 刘丹, 雷玉成, 张伟伟, 李天庆, 姚奕强, 丁祥彬. He+ 辐照对CLAM钢焊缝微观组织和性能的影响[J]. 材料研究学报, 2022, 36(8): 609-616.
[7] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[8] 玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
[9] 施渊吉,于林惠,于照鹏,成功,吴晓春,滕宏春. 热作模具钢DM的高温稳定性和热疲劳性能[J]. 材料研究学报, 2020, 34(2): 125-136.
[10] 涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
[11] 郝志玲,范红玉,郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇. He等离子体辅助的纳米钨结构材料的制备[J]. 材料研究学报, 2017, 31(6): 415-421.
[12] 付振宇,王泽群,刘平平,魏印平,万发荣,詹倩. 氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变*[J]. 材料研究学报, 2016, 30(9): 641-648.
[13] 杨铭, 范红玉, 解晓东, 郭一鸣, 刘云鹤, 李坤. 高能W6+预辐照对钨表面微结构的影响[J]. 材料研究学报, 2016, 30(4): 277-284.
[14] 张敏,刘明志,史倩茹,李继红. FV520(B)马氏体不锈钢匹配自保护药芯焊丝的研制*[J]. 材料研究学报, 2014, 28(10): 751-755.
[15] 李瑞琦;李春东;何世禹;杨德庄. Kapton/Al薄膜的电子辐照损伤[J]. 材料研究学报, 2007, 21(6): 577-580.