Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 427-434    DOI: 10.11901/1005.3093.2018.437
  研究论文 本期目录 | 过刊浏览 |
预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响
涂坚1,2,刘雷1,丁石润1,李建波3,周志明1,2,董安平4,黄灿1,2,3()
1. 重庆理工大学材料科学与工程学院 重庆 400054
2. 重庆市模具技术重点实验室(重庆理工大学) 重庆 400054
3. 重庆大学材料科学与工程学院 重庆 400044
4. 上海交通大学材料科学与工程学院 上海 200240
Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi
Jian TU1,2,Lei LIU1,Shirun DING1,Jianbo LI3,Zhiming ZHOU1,2,Anping DONG4,Can HUANG1,2,3()
1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2. Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3. School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
4. Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
Jian TU, Lei LIU, Shirun DING, Jianbo LI, Zhiming ZHOU, Anping DONG, Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. Chinese Journal of Materials Research, 2019, 33(6): 427-434.

全文: PDF(17347 KB)   HTML
摘要: 

使用电子背向散射衍射技术研究了预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制和后续再结晶行为的影响。结果表明,在低应变量条件下,变形温度对CoCrFeMnNi高熵合金的形变微观组织没有显著的影响,形变机制均以位错滑移为主导;在室温下变形,随着应变量的增大位错滑移和孪生变形共同主导变形。在低温退火条件下预变形程度对再结晶行为也没有显著的影响,难以发生再结晶。但是在高温退火条件下,变形程度的提高使再结晶晶粒显著细化和∑3晶界的比例大幅度提高。

关键词 金属学微观组织电子背散射衍射技术高熵合金    
Abstract

The effect of the degree and temperature of pre-deformation on the deformation mechanism and subsequent recrystallization behavior of a high-entropy alloy CoCrFeMnNi, as well as, its microstructural evolution during deformation and post annealing treatments were investigated by using electron backscatter diffraction equipped in field emission gun scanning electron microscope. Results show that under low strain conditions, the effect of temperature on the microstructure of deformed alloy is not obvious, and the deformation mechanism is dominated mainly by dislocation slip. Moreover, at room temperature, with the increasing strain the deformation mechanisms dominated by dislocation slip and deformation twinning. In addition, in the condition of low temperature annealing, the effect of pre-deformation degree on recrystallization is not obvious, implying that the recrystallization is not easy to initiate. However, under the condition of high temperature annealing, both the refinement degree of recrystallization grains and the percentage of ∑3 boundaries increase with the increasing pre-deformation degree.

Key wordsmetallography    microstructure    electron back scattering diffraction    high-entropy alloy
收稿日期: 2018-07-08     
ZTFLH:  TG113  
基金资助:国家自然科学基金(51401039);国家自然科学基金(51501026);重庆市基础与前沿研究计划项目(cstc2017jcyjAX0381);重庆市博士后特别资助(Xm2017049);中国博士后科学基金(2018M632250);中国博士后科学基金(2017M621661)
作者简介: 涂 坚,男,1987年生
图1  铸态CoCrFeMnNi高熵合金的微观组织(表面,截面)和(c1-c5)能谱
图2  热轧(400℃,H-15%)和室温轧(20℃,R-15%)样品的微观组织特征,包括反极图(IPF),晶界图(GB)和取向差图(MAD),小角度界面和大角度晶界分别用浅灰色和黑色线条表示
图3  不同应变量的室温(20℃)轧制样品的EBSD图
图4  室温轧制态的样品(中等应变量30%)在不同温度再结晶热处理后的EBSD图
图5  室温轧制样品(大应变量60%)在不同温度热处理后的EBSD图
图6  预变形和再结晶热退火处理后CoCrFeMnNi高熵合金微观组织的演变
[1] Chen F, Huang H G, Xue P, et al. Research progress on microstructure and mechanical properties of friction stir processed Ultrafine-grained materials [J]. Chinese Journal of Materials Research, 2018, 32(1): 1
[1] (陈菲菲, 黄宏军, 薛 鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018, 32(1): 1)
[2] Lv Z P, Jiang S H, He J Y. The performance of martensitic aging strengthening high thermal conductivity hot stamping die steel SKD [J]. Chinese Journal of Materials Research, 2016, 27(5): 532
[2] (徐伟力, 李 爽, 尹学炜等. 马氏体时效强化高热导率热冲压模具钢SDK1钢的性能 [J]. 材料研究学报, 2016, 27(5): 532)
[3] Guo J T, Zhou L Z, Tian Y X. Effect of solution temperature on microstructure and mechanical property of high temperature alloy GH2787 [J]. Chinese Journal of Materials Research, 2017, 31(7): 517
[3] (徐 玲, 国振兴, 张冬梅等. 固溶温度对GH2787合金组织性能的影响 [J]. 材料研究学报, 2017, 31(7): 517)
[4] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1
[5] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448
[6] Ye Y F, Wang Q, Lu J. Yang Y. High-entropy alloy: challenges and prospects [J]. Materials Today, 2016, 19(6): 349
[7] Diao H. Y., Feng R., Dahmen K. A., et al. Fundamental deformation behavior in high-entropy alloys: An overview [J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 252
[8] Tsai M H, Ye J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
[9] David S, Babu S, Vitek J. Welding: Solidification and microstructure [J]. JOM, 2003, 55(6): 14
[10] Hansen N., Barlow C. Y.. Plastic Deformation of Metals and Alloys [M]. Elsevier: Physical Metallurgy Press, 2014: 1681
[11] Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Materialia. 1997, 45(6): 2633.
[12] Reddy S. R., Ahmed M. Z., D.Sathiaraj G., et al. Effect of strain path on microstructure and texture formation in cold-rolled and annealed FCC equiatomic CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2017, 87: 94
[13] Tu J, Zhang S, Zhou T, et al. Structural characterization of island ε-martensitic plate in cobalt [J]. Materials Characterization, 2016, 119: 34
[14] Tu J, Zhang S, Zhou Z, Tang H. Structural characterization of a special boundary between α plates after martensitic transformation in cobalt [J]. Materials Characterization, 2016, 112: 219
[15] Mahajan S. Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys [J]. Scripta Materialia, 2013, 68(2): 95
[16] Randle V. Grain boundary engineering: an overview after 25 years [J]. Materials Science and Technology, 2010, 26(3): 253
[17] Watanabe T. Grain boundary engineering: historical perspective and future prospects [J]. Journal of Materials Science, 2011, 46 (12): 4095
[18] Sinha S, Kim D I, Fleury E, et al. Effect of grain boundary engineering on the microstructure and mechanical properties of copper containing austenitic stainless steel [J]. Materials Science and Engineering: A, 2015, 626: 175
[19] Bai Q, Zhao Q, Xia S, et al. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth [J]. Materials Characterization, 2017, 123: 178
[20] Tokita S, Kokawa H. In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel [J]. Materials Characterization, 2017, 131: 31
[21] Yang H, Zhang Z L, Zhao Q, et al. Improving the inter-grain corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel [J]. Acta. Metall. Sin., 2015, 51(3): 333
[21] (杨 辉, 夏 爽, 张子龙等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响 [J]. 金属学报, 2015, 51(3): 333)
[22] Xia S, Li H, Liu T G, et al. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance [J]. Journal of Nuclear Materials, 2011, 416(3): 303
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[6] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[7] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[8] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[9] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[10] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[11] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 聂敬敬, 龚政轩, 孙京丽, 杨斯达, 夏先朝, 徐爱杰. 2195-2219异种铝合金焊接接头的微观组织和性能[J]. 材料研究学报, 2023, 37(2): 152-160.
[14] 肖寒, 周瑀杭, 陈磊, 张雄超, 崔鋆昕, 熊迟. 等温处理时间对触变挤压锡青铜轴套的组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 641-648.
[15] 王国田, 龙泽堃, 吴彪, 王强, 丁宏升. 脉冲电流对冷坩埚定向凝固TiAl基合金微观组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 706-714.