Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 125-136    DOI: 10.11901/1005.3093.2019.339
  研究论文 本期目录 | 过刊浏览 |
热作模具钢DM的高温稳定性和热疲劳性能
施渊吉1,于林惠1,于照鹏2,成功1,吴晓春3,滕宏春1()
1. 南京工业职业技术学院机械工程系 南京 210046
2. 常熟理工学院汽车工程学院 苏州 215500
3. 上海大学材料科学与工程学院 上海 200072
High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel
SHI Yuanji1,YU Linhui1,YU Zhaopeng2,CHENG Gong1,WU Xiaochun3,TENG Hongchun1()
1. Department of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing 210046, China
2. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China
3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

施渊吉,于林惠,于照鹏,成功,吴晓春,滕宏春. 热作模具钢DM的高温稳定性和热疲劳性能[J]. 材料研究学报, 2020, 34(2): 125-136.
Yuanji SHI, Linhui YU, Zhaopeng YU, Gong CHENG, Xiaochun WU, Hongchun TENG. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. Chinese Journal of Materials Research, 2020, 34(2): 125-136.

全文: PDF(11425 KB)   HTML
摘要: 

研究了热作模具钢DM的高温稳定性和热疲劳性能。结果表明,DM钢在620℃热稳保温过程中马氏体板条内的薄片状M3C型碳化物逐渐向条块状M7C3型碳化物转变,在板条的边界生成M7C3、M23C6型碳化物。DM钢的短循环周次热疲劳性能受控于位错重排和湮灭,长循环周次热疲劳性能受控于碳化物的粗化程度。DM钢中M3C、M7C3、M6C型碳化物的生成自由能分别为27765.5 J/mol、3841.5 J/mol、-7138.1 J/mol,表明在热稳保温与热疲劳试验过程中碳化物的演变机理一致,发生了M3C→M7C3→M6C类型演变。

关键词 金属学热作模具钢微观分析碳化物高温热稳定性热疲劳    
Abstract

The microstructure and performance of a novel DM steel for hot forging dies were systematically investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal fatigue tester. Results show that the laminar M3C carbides gradually transform into blocky carbides M7C3 inside the martensitic slabs, while carbides M7C3 and M23C6 are found at boundaries of slabs. Based on the Uddeholm self-restricting thermal fatigue test results, the short cyclic thermal fatigue performance was controlled by dislocation rearrangement and annihilation. Whereas, the long cyclic one was affected by the temper resistance of the DM steel and strongly depended on the carbide morphology and their resistance to over-ageing. In addition, the free energies of formation for carbides M3C, M7C3 and M6C in the DM steel are 236.4, 212.0, and 228.9 kJ/mol, respectively. The mechanism of carbides evolution during the thermal stability test is consistent with thermal fatigue test, the transformation of the carbides follows the sequence as M3C→M7C3→M6C.

Key wordsmetallography    hot working die steel    micro-analysis    carbides    High temperature stability    thermal fatigue
收稿日期: 2019-07-09     
ZTFLH:  TG430.1040  
基金资助:江苏省高等学校自然科学研究面上项目(19KJB430024);江苏省自然科学基金(BK20181036);南工院人才科研启动基金(YK180113)
作者简介: 施渊吉,男,1989年生,博士
CMnSiCrMoWVFe
DM0.401.00.32.31.71.71.0Bal.
表1  DM钢的化学成分
图1  热疲劳试验机的结构和试样的示意图
图2  不同热稳温度下DM钢的硬度曲线
图 3  DM钢在620℃热稳保温1 h后的TEM照片
图 4  DM钢在620℃热稳保温1 h后的TEM像
Morphology

Size (Length)

/nm

Type
1 hStrip100M3C
Rod600M7C3, M23C6
20 hNeedle100 ~ 200M2C
Block50 ~ 100M7C3
表2  DM钢在620℃热稳保温1 h和20 h后碳化物的形貌、尺寸和类型
图 5  DM钢在620℃热稳保温20 h后的 TEM照片
图 6  DM钢在620℃热稳保温20 h后的 TEM照片
图7  DM钢热疲劳循环不同周次后的表面裂纹形貌
CyclesSurface damage factorSection damage factorTotal damage factor
6000.0210.100.009
20000.0530.280.019
30000.0770.290.023
表3  DM钢热疲劳循环不同周次的损伤因子
图8  DM钢热疲劳循环不同周次后截面的硬度梯度
图9  DM钢热疲劳测试前TEM碳膜的复型图像
图10  DM钢热疲劳循环600次后TEM碳膜复型图像
图11  DM钢热疲劳循环2000次后TEM碳膜复型图像
图12  DM钢热疲劳循环3000次后TEM碳膜复型图像
图13  热疲劳循环不同周次后碳化物的面积百分比
图14  热疲劳循环不同周次后碳化物的尺寸分布
图15  DM钢热疲劳循环不同周次后的X射线衍射图谱
图16  DM钢热疲劳循环不同周次后表层位错的密度
Reaction equationsΔG/J·mol-1Temperature range/℃
3[Fe]α+[C]=Fe3CΔGFe3C=6450+23.09T25~727
7[Cr]+3[C]=Cr7C3ΔGCr7C3=-356120+398.25T25~1857
23[Cr]+6[C]=Cr23C6ΔGCr23C6=-887890+1156.19T25~1520
2[Mo]+[C]=Mo2CΔGMo2C=-123410+135.54T25~1100
3[Fe]+3[Mo]+[C]=Fe3Mo3CΔGFe3Mo3C=-149497+154.21T25~900
[Mo]+[C]=MoCΔGMoC=-125500+89.98T25~700
[V]+[C]=VCΔGVC=-77180+92.29T25~2000
表4  DM钢中碳化物的生成自由能ΔGMxCy
图17  DM钢中各碳化物单位摩尔生成自由能与温度的关系
[1] Shi Y J, Wu X C. Research on oxidation wear behavior of a new hot forging die steel [J]. J. Mater. Eng. Perform., 2018, 27(1): 176
[2] Kim Y J, Choi C H. A study on life estimation of hot forging die [J]. Int. J. Precis. Eng. Man., 2009, 10(3): 105
[3] Kosec B K, Kosec L, Kopa? J. Analysis of casting die failures [J]. Eng. Fail. Anal., 2001, 8(4): 355
[4] Arif A F M, Sheikh A K, Qamar S Z. A study of die failure mechanisms in aluminum extrusion [J]. J. Mater. Process. Tech., 2003, 134(3): 318
[5] Chen C, Wang Y, Ou H, et al. A review on remanufacture of dies and moulds [J]. J. Clean. Prod., 2014, 64: 13
[6] Abel A, Ham R K. The cyclic strain behaviour of crystals of aluminum-4wt.% copper-ii. low cycle fatigue [J]. Acta. Metall., 1966, 14(11): 1495
[7] McGrath J T, Bratina W J. Interaction of dislocations and precipitates in quench-aged iron-carbon alloys subjected to cyclic stressing [J]. Acta. Metall., 1967, 15(2): 329
[8] Cui C S, Gao X H, Su G Q, et al. Effect of Tempering Temperature on Microstructure and Mechanical Properties of High Cr Martensitic Heat Resistant Steel [J]. Northeast. U. Nat. Sci., 2018, 39(4): 501
[8] (崔辰硕, 高秀华, 苏冠侨等. 回火温度对高Cr马氏体耐热钢组织与性能的影响 [J]. 东北大学学报: 自然科学版, 2018, 39(4): 501)
[9] Yan W, Wang W, Shan Y Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels [J]. Front. Mater. Sci., 2013, 7(1): 1
[10] Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mat. Res., 2017, 31(1): 32
[10] (李爽, 吴晓春, 黎欣欣等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 34)
[11] Min Y A, Bergstr?m J, Wu X C, et al. Oxidation and thermal fatigue behaviors of two type hot work steels during thermal cycling. J. Iron Steel Res. Int., 2013, 20(11): 90
[12] Yang J X. Microstructure and properties stability and thermal fatigue properties of K465 nickel-based superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006
[12] (杨金侠. K465镍基高温合金的组织和性能稳定性及热疲劳性能 [D]. 沈阳: 中国科学院金属研究所, 2006)
[13] Li J W, Shi Y J, Wu X C. Effect of initial hardness on the thermal fatigue behavior of AISI H13 steel by experimental and numerical investigations [J]. Fatigue. Fract. Eng. M., 2018, 41(6): 1260
[14] Wu X C, Xu L P. Computer aided evaluation of thermal fatigue cracks on hot-work tool steel [A]. Proceedings of the 6th International tooling conference and The Use of Tools Steels: Experience and Research [C]. Sweden, 2002
[15] Keijser T D, Mittemeijer E J, Rozendaal H C F. The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures [J]. J. Appl. Crystallogr., 1983, 16(3): 309
[16] Ungár T, Dragomir I, Revesz A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice [J]. J. Appl. Crystallogr., 1999, 32(5): 992
[17] Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mat. Sci. Eng. A, 2003, 361(1): 191
[18] He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of a Ni-base superalloy M963 [J]. Mat. Sci. Eng. A, 2005, 397(1): 297
[19] Inoue A, Masumoto T. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels [J]. Metall. Trans. A, 1980, 11(5): 739
[20] Zhou Q C Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mat. Sci. Eng. A, 2011, 528(18): 5696
[21] Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
[22] Shi Y J, Wu X C, Li J W. Tempering stability of Fe-Cr-Mo-W-V hot forging die steels [J]. Int. J. Min. Met. Mater., 2017, 24(10): 1145
[23] Xie C. Research on microstructure evolution and mechanism of phase transformation during cryogenic treatment of high carbon high alloy steel [D]. Shanghai: Shanghai University, 2016
[23] (谢尘. 高碳高合金钢深冷处理微观结构演化及相变机理研究 [D]. 上海:上海大学, 2016)
[24] Sahu P, De M. Microstructural characterization of Fe-Mn-C martensites athermally transformed at low temperature by Rietveld meth-od [J]. Mat. Sci. Eng. A, 2002, 333(1): 10
[25] Medvedeva A, Bergstr?m J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mat. Sci. Eng. A, 2009, 523(1): 39
[26] Ye D L. Practical Inorganic Manual of Thermodynamic Data [M]. Beijing: Metallurgical Industry Press, 2002
[26] (叶大伦. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002)
[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] 胡海波, 朱丽慧, 段元满, 吴晓春, 顾炳福. 原位研究M2高速钢微裂纹的萌生和扩展[J]. 材料研究学报, 2022, 36(5): 365-372.
[4] 崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
[5] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[6] 黄亚奇, 王栋, 卢玉章, 熊英, 申健. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为[J]. 材料研究学报, 2021, 35(7): 510-516.
[7] 段元满, 朱丽慧, 吴晓春, 顾炳福. 深冷处理时间对M2高速钢红硬性的影响[J]. 材料研究学报, 2021, 35(1): 17-24.
[8] 玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
[9] 郑合凤, 师梦杰, 毛强, 张孟超, 李慧. Inconel 600合金中不同类型晶界处铬的浓度[J]. 材料研究学报, 2020, 34(7): 511-517.
[10] 王斌,何燕萍,王昊杰,田勇,贾涛,王丙兴,王昭东. 航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳[J]. 材料研究学报, 2020, 34(1): 35-42.
[11] 李东辉, 李志敏, 肖茂果, 李绍宏, 赵昆渝, 杨卯生. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响[J]. 材料研究学报, 2019, 33(8): 561-571.
[12] 孙欢迎,赵军,刘翊安,张泉,曹京霞,黄旭. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响[J]. 材料研究学报, 2019, 33(7): 537-542.
[13] 涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
[14] 张拓,滕铝丹,臧其玉,杨弋涛. 含铌中铬耐磨铸钢的摩擦磨损行为[J]. 材料研究学报, 2019, 33(4): 313-320.
[15] 杨贵荣,高大文,宋文明,张玉福,马颖. 45钢表面Ni/WC复合熔覆层的形成机制[J]. 材料研究学报, 2019, 33(2): 87-94.