Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 775-781    DOI: 10.11901/1005.3093.2017.578
  研究论文 本期目录 | 过刊浏览 |
高致密高包覆率银包铜粉的制备和性能
武博1, 朱晓云1,3(), 曹梅2, 龙晋明3
1 昆明理工大学材料科学与工程学院 昆明 650093
2 昆明理工大学理学院 昆明 650093
3 昆明贵信凯科技有限公司 昆明 650093
Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder
Bo WU1, Xiaoyun ZHU1(), Mei CAO2, Jinming LONG3
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 School of Science, Kunming University of Science and Technology, Kunming 650093, China
3 Kunming Guixinkai Science and Technology Ltd, Kunming 650093, China
引用本文:

武博, 朱晓云, 曹梅, 龙晋明. 高致密高包覆率银包铜粉的制备和性能[J]. 材料研究学报, 2018, 32(10): 775-781.
Bo WU, Xiaoyun ZHU, Mei CAO, Jinming LONG. Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder[J]. Chinese Journal of Materials Research, 2018, 32(10): 775-781.

全文: PDF(3543 KB)   HTML
摘要: 

采用复合化学镀方法制备高致密、高包覆率的银包铜粉,使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、管式高温烧结炉和数字欧姆表表征了银包铜粉的物相组成、表面形貌、抗氧化性和导电性。结果表明:当在铜粉表面化学镀银时,在镀液中添加适量的纳米Ag制备的银包覆层致密性好、包覆率高,镀覆效果比未加纳米Ag时的好,银包铜粉具有良好的抗氧化性和导电性。

关键词 复合材料银包铜粉复合化学镀高致密性高包覆率    
Abstract

Novel Ag-coatings of high density and high coverage were prepared on Cu-powders via composite electroless plating. Then the phase composition, surface morphology, oxidation resistance and electrical conductivity of the Ag-coated Cu-powder were characterized by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM), high temperature oxidation test and digital ohmmeter respectively. The results show that when a proper amount of nano-Ag particulate was added to the plating electrolyte, the chemical deposition of Ag-coating of high density and high coverage can be facilitated on the surface of Cu-powder, besides,such nano-Ag particulate containing electrolyte presents better plating effect than that without adding nano-Ag particulate. Furthermore, the Ag-coated Cu- powder has good oxidation resistance and electrical conductivity.

Key wordscomposite    silver-coated copper powder    composite electroless plating    high density    high coverage
收稿日期: 2017-09-29     
ZTFLH:  TG146  
基金资助:云南省科技型中小企业技术创新资金(2017EH016),昆明理工大学分析测试基金(2016M20152230070)
作者简介:

作者简介 武博,男,1990年生,硕士生

图1  银包铜粉制备工艺和测试流程
图2  不同纳米Ag添加量银包铜粉的SEM形貌
图3  银包铜粉的线扫描元素分布图
图4  银包铜粉镀层的SEM形貌
图5  未添加纳米Ag和添加纳米Ag银包铜粉银镀层的物理生长模型
图6  银包铜粉的XRD图谱
Silver-coated copper powder R (111) R (200)
No added nano silver 0.61 0.76
Added nano silver 0.50 0.73
表1  银包铜粉的特征峰强度比
图7  镀层的沉积生长过程示意图
图8  镀层的包覆效果示意图
图9  不同银含量复合化学镀银包铜粉的SEM形貌
Silver-coated
copper powder
Oxidative weight
gain/%
No added nano silver 9.9
Added nano silver 8.4
表2  银包铜粉的抗氧化性
图10  银包铜粉的导电性
[1] Cao W, Li W, Yin R, et al.Controlled fabrication of Cu-Sn core-shell nanoparticles via displacement reaction[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2014, 453(8): 37
[2] Kim I, Kim Y, Woo K, et al.Synthesis of oxidation resistant core-shell copper nanoparticles[J]. RSC Advances, 2013, 3(35): 15169
[3] Miyakawa M, Hiyoshi N, Nishioka M, et al.Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using micro- wave assisted core particle formation coupled with galvanic metal displacement[J]. Nanoscale, 2014, 6(15): 8720
[4] Huang L, Luo L, Ding X, et al.Effects of simplified pretreatment process on the morphology of W-Cu composite powder prepared by electroless plating and its sintering characterization[J]. Powder Technol., 2014, 258: 216
[5] Kim X Y, Kim J, Choe J, et al.Fabrication of electrically conductive nickel-silver bimetallic particles via polydopa-mine coating[J]. Nanosci. Nanotechnol., 2013, 13(11): 7600
[6] Choe W G, Kim D Y, Park O O, et al.Morphology control and temporal growth of a continuous silver shell on core-shell spheres[J]. Crystengcomm, 2014, 16(23): 5142
[7] Song S, Mannari V.Light-colored compound conductive coatings based on CuI: Effect of volume fraction of CuI on morphology and electrical conductivity[J]. Prog. Org. Coat., 2010, 68(3): 208
[8] Jayaprakash N, Judith V J, John K L, et al.Antibacterial activity of silver nanoparticles synthesized from serine[J]. Mater. Sci. Eng., C, 2015, 49: 316
[9] Anna M R G, Claudia A, Mirko M, et al. Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications[J]. Appl. Surf. Sci., 2013, 280(8): 610
[10] Szymanska I B.Influence of the gas phase composition on the properties of bimetallic Ag/Cu nanomaterials obtained via chemical vapor deposition[J]. Polyhedron, 2013, 65(12): 82
[11] Zhang Y, Sun S, Zhang X, et al.Magnetic field controlled particle mediated growth inducing icker-like silver architectures[J]. Chem. Eng. J., 2014, 240(6): 494
[12] Chun W W, Shin M S, Choi B N, et al.Effect of heat treatment on the electrochmical properties of Mn oxide based powder prepared using a wet chemical process[J]. Sci. Adv. Mater., 2016, 8(1): 89
[13] Jung D S, Lee H M, Kang Y C, et al.Air-stable silver-coated copper particles of sub-micrometer size[J]. J. Colloid Interface Sci., 2011, 364(2): 574
[14] Zhu S, Yao J K, Remanufacturing process and technologies of electric brush-plating[J]. New Technol. New Process, 2009, 6: 1(朱胜, 姚巨坤. 电刷镀再制造工艺技术[J]. 新技术新工艺, 2009, 6: 1)
[15] Yuan Q L, Ling W D, Li P, et al.Effect of content of nano-ZrO2 on microstructure and micro-hardness of Ni-ZrO2 composite coatings prepared with electro-brush plating[J]. T. Mater. Heat Treat., 2013, 34(6): 142(袁庆龙, 凌文丹, 李平等. 纳米ZrO2含量对Ni/ZrO2刷镀层组织和硬度的影响[J]. 材料热处理学报, 2013, 34(6): 142)
[16] Yuan Q L, Ling W D, Li P, et al.Microstructure and properties of nicke1-base nano-Y2O3 composite coating prepared with electro-brush plating[J]. Rare Metal Mat. Eng., 2012, 41(A2): 603(袁庆龙, 凌文丹, 李平等. Ni/Y2O3纳米复合刷镀层组织及性能研究[J]. 稀有金属材料与工程, 2012, 41(A2): 603)
[17] Ying L X, Liu Y, Liu G J, et al.Preparation and properties of electroless Plating wear-resistant and antifriction composite coatings Ni-P-SiC-WS2[J]. Rare Metal Mat. Eng., 2015, 1: 28(应丽霞, 刘莹, 刘冠男等. 化学复合镀Ni-P-SiC-WS2耐磨减摩镀层的制备及性能研究[J]. 稀有金属材料与工程, 2015, 1: 28)
[18] Gui Y H, Dong F H, Niu L J, et al.Mechanism of Ni-P-SiC coating cBN abrasives by electroless composite plating[J]. J. Synth. Cryst., 2011, 40(4): 953(桂阳海, 东方红, 牛连杰等. 化学复合镀制备Ni-P-SiC包覆立方氮化硼的机理研究[J]. 人工晶体学报, 2011, 40(4): 953)
[19] Hou F, Xu H, Zeng B, et al.Study on the crystallization behavior of electroless Ni-P-SiO2 composite coatings[J]. Rare Metal Mat. Eng., 2012, 41(A2): 398(侯峰, 徐宏, 曾斌等. 化学镀Ni-P-SiO2复合镀层的晶化行为研究[J]. 稀有金属材料与工程, 2012, 41(A2): 398)
[20] Wang H X, Mao X Y, Shen T.Effect of nano-SiC particles on properties of Ni-SiC micro-composite coatings[J]. Chin. J. Nonferrous met., 2015, 25(6): 1560(王红星, 毛向阳, 沈彤. 纳米SiC颗粒对微米Ni-SiC复合镀层性能的影响[J]. 中国有色金属学报, 2015, 25(6): 1560)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.