Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 634-640    DOI: 10.11901/1005.3093.2015.619
  本期目录 | 过刊浏览 |
磁控溅射铜膜与基底结合强度的分析研究*
李佳君1, 刘浩1, 左永刚1, 白旸1, 袁禾蔚1, 何其宇2, 姜龙2, 郭辉2, 孙振路2, 陈广超1
1. 中国科学院大学材料科学与光电技术学院 北京 100049
2. 河北省科学院激光所 石家庄 050081
Analysis of Adhesive Strength between Magnetron Sputtered Copper Films and Substrate
LI Jiajun1, LIU Hao1, ZUO Yonggang1, BAI Yang1, YUAN Hewei1, HE Qiyu2, JIANG Long2, GUO Hui2, SUN Zhenlu2, CHEN Guangchao1,**
1. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2. Hebei Institute of Laser, Shijiazhuang 050081, China
引用本文:

李佳君, 刘浩, 左永刚, 白旸, 袁禾蔚, 何其宇, 姜龙, 郭辉, 孙振路, 陈广超. 磁控溅射铜膜与基底结合强度的分析研究*[J]. 材料研究学报, 2016, 30(8): 634-640.
Jiajun LI, Hao LIU, Yonggang ZUO, Yang BAI, Hewei YUAN, Qiyu HE, Long JIANG, Hui GUO, Zhenlu SUN, Guangchao CHEN. Analysis of Adhesive Strength between Magnetron Sputtered Copper Films and Substrate[J]. Chinese Journal of Materials Research, 2016, 30(8): 634-640.

全文: PDF(3849 KB)   HTML
摘要: 

根据磁控溅射金属铜膜在超声清洗中从硅基底上发生剥落的现象, 分析了样品在声场中的运动和受力状态, 发现样品会发生受迫振动, 拉-拉周期应力引起膜基界面的失效是薄膜脱落的主要原因, 而空化作用是次要原因。通过建立的力学模型, 计算了膜基结合强度。与划痕法等所测得的膜基结合强度值的比较, 计算值与测量值在数量级和与溅射参数变化趋势上有很好的吻合。此评价方法可以应用于溅射铜膜/多晶金刚石的膜基体系上, 并研究了超声参数、基底表面形貌、基底成份等因素对膜基结合强度的影响。

关键词 材料检测与分析技术膜基结合强度超声清洗受迫振动磁控溅射铜薄膜    
Abstract

As magnetron sputtering copper films would flake from silicon substrates in the ultrasonic cleaner, this paper analyzed the states of motion and stress of samples in the ultrasonic medium. By calculation, it was found that the tension-tension cycle stress caused by forced vibration was the main reason of interface damage. Then the ultrasonic mechanical model was established and the film-substrate adhesive strength was calculated. The results showed that the adhesive strength values gotten by the ultrasonic test method were in the same order of magnitude compared with that of scratch test results. In addition, this ultrasonic test method was used to test adhesion of copper films on diamond substrates. The influence of ultrasonic parameters, substrate morphology as well as composition on adhesive strength was also discussed.

Key wordsmaterials testing and analysis    adhesive strength    ultrasonic cleaning    forced vibration    magnetron sputtering    copper film
收稿日期: 2015-11-02     
基金资助:* 国家自然基金50128790, 中科院百人计划, 科学院装备计划项目yz201356, 北京市科技计划课题Z151100003315024, 河北省科技计划项目14291110D资助
作者简介: 本文联系人: 陈广超, 教授
Sample Si-1 Si-2 Si-3 Polished Fine-grain Coarse-grain
Substrate Si Si Si Diamond Diamond Diamond
Sputtering power/W 250 375 425 425 425 425
Pressure/Pa 1.5 1.5 1.5 1.5 1.5 1.5
Sputtering time/min 8 8 8 8 8 8
表1  溅射参数及对应样品
图1  Si-1样品超声处理前后的表面铜膜形貌: (a)超声处理前; (b)超声处理1 min; (c)超声处理2 min。
图2  溅射功率与铜膜失效时间和剥落速度的关系
图3  (a)Si-1样品(b)Si-2样品(c)Si-3样品的纳米划痕结果
图4  (a)超声模拟模型。假定振荡源处声压幅值为1时(b)距离底面15 mm的水平面内, 距离中轴线0 mm, 30 mm, 60 mm处接收到的声压幅值(c)中轴线上距离底面5 mm, 10 mm, 15 mm, 20 mm处接收到的声压幅值
图5  分别使用超声方法与划痕法得到的膜基结合强度
图6  不同金刚石基底的表面形貌(a)抛光样品(b)细晶样品(c)粗晶样品
图7  金刚石基底的(a)XRD结果和(b)拉曼结果
图8  超声处理60 min后各样品的外观(其中的弧形区域为夹具形状): (a)抛光样品(b)细晶样品(c)粗晶样品
Sample Polished Fine-grain Coarse-grain
Damage starting time/s 360 - 2400
Lasting time/s
Damage speed/mm2/s
3240
0.03
-
-
1200
0.003
Adhesive strength/MPa 58.7 - 102.4
表2  铜膜在金刚石基底上的失效时间和超声法获得的膜基结合强度
1 G. Feldbauer, M. Wolloch, P. O. Bedolla, P. Mohn, J. Redinger, A. Vernes, Adhesion and material transfer between contacting Al and TiN surfaces from first principles, Physical Review B, 91(16), 165413(2015)
doi: 10.1103/PhysRevB.91.165413
2 W. W. Gerberich, M. J. Cordill, Physics of adhesion, Reports on Progress in Physics, 69(7), 2157(2006)
doi: 10.1088/0034-4885/69/7/R03
3 M. J. Yim, Y. Li, K. S. Moon, K. W. Paik, C. P Wong, Review of recent advances in electrically conductive adhesive materials and technologies in electronic packaging, Journal of Adhesion Science and Technology, 22(14), 1593(2008)
doi: 10.1163/156856108X320519
4 S. Wang, X. Z. Yu, H. T. Fan, Simple lithographic approach for subwavelength structure antireflection, Applied Physics Letters, 91(6), 061105(2007)
doi: 10.1063/1.2767990
5 K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surface and Coatings Technology, 204(11), 1661(2010)
doi: 10.1016/j.surfcoat.2009.11.013
6 G. P. Zhang, Z. G. Wang, Progress in fatigue of small dimensional materials, Acta Metallurgica Sinica, 41(1), 1(2005)
doi:
7 A. A. Volinsky, N. R. Moody, W. W. Gerberich, Interfacial toughness measurements for thin films on substrates, Acta Materialia, 50(3), 441(2002)
doi: 10.1016/S1359-6454(01)00354-8
8 S. J. Bull, E. G. Berasetegui, An overview of the potential of quantitative coating adhesion measurement by scratch testing, Tribology International, 39(2), 99(2006)
doi: 10.1016/j.triboint.2005.04.013
9 S. Y. Chang, T. K. Chang, Y. S. Lee, Nanoindentating mechanical responses and interfacial adhesion strength of electrochemically deposited copper film, Journal of The Electrochemical Society, 152(10), C657(2005)
doi: 10.1149/1.2006508
10 REN Fengzhang, ZHENG Maosheng, JIA Shuguo, MA Zhanhong, ZHU Yaoming, Current status ofblister tests for adhesion of thin films to substrate, Chinese Journal of Materials Research, 20(4), 346(2006)
10 (任凤章, 郑茂盛, 刘平, 贾淑果, 马战红, 祝要民, 鼓膜实验法测试薄膜基体界面结合强度的进展, 材料研究学报, 20(4), 348(2009))
11 S. Goyal, K. Srinivasan, G. Subbarayan, T. Siegmund, A non-contact, thermally-driven buckling delamination test to measure interfacial fracture toughness of thin film systems, Thin Solid Films, 518(8), 2056(2010)
12 M. Pang, S. P. Baker, Quantitative measurements of subcritical debonding of Cu films from glass substrates, Journal of Materials Research, 20(09), 2420(2005)
13 I. Meyyappan, A. P. Malshe, H. A. Naseem, W. D. Brown, Au/(Ti-W) and Au/Cr metallization of chemically vapor-deposited diamond substrates for multichip module applications, Thin Solid Films, 253(1-2), 407(1994)
doi: 10.1016/0040-6090(94)90357-3
14 M. Willander, M. Friesel, Q. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications, Journal of Materials Science: Materials in Electronics, 17(1), 1(2006)
doi: 10.1007/s10854-005-5137-4
15 LI Xin, TANG Zhenan, XU Jun, Preparation and characterization of DLC films for microelectromechanical systems (MEMS) applications, Chinese Journal of Materials Research, 18(6), 582(2004)
15 (李新, 唐祯安, 徐军, 用于微机电系统的类金刚石膜制备及表征, 材料研究学报, 18(6), 582(2004))
doi:
16 W. Matthias, Diamond metallization for device applications, Semiconductor Science and Technology, 18(3), S41(2003)
doi: 10.1088/0268-1242/18/3/306
17 L. Dong, R. W. Smith, D. J. Srolovitz, A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition, Journal of Applied Physics, 80(10), 5682(1996)
doi: 10.1063/1.363621
18 R. W. Smith, D. J. Srolovitz, Void formation during film growth: A molecular dynamics simulation study, Journal of Applied Physics, 79(3), 1448(1996)
doi: 10.1063/1.360983
19 H. Haberland, Z. Insepov, M. Moseler, Molecular-dynamics simulation of thin-film growth by energetic cluster impact, Physical Review B, 51(16), 11061(1995)
doi: 10.1103/PhysRevB.51.11061 pmid: 9977812
20 LI Yuqiong, YU Zhinong, WANG Huaqing, LU Weiqiang, XUE Wei, DING Zhao, Effects of substrate materials and deposition parameters on film stress, Acta Optica Sinica, 30(2), 602(2010)
20 (李玉琼, 喻志农, 王华清, 卢维强, 薛唯, 丁瞾, 基片材料与沉积参数对薄膜应力的影响, 光学学报, 30(2), 602(2010))
doi: 10.3788/aos20103002.0602
21 C. T. Wu, Y. Ramaswamy, D. Gale, W. R. Yang, K. Q. Xiao, L. C. Zhang, Y.B. Yin, H. Zreiqat, Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method, Acta Biomaterialia, 4(3), 569(2008)
22 LI Jiajun, Research of surface metallization andlithography on diamond, Master Dissertation, University of Chinese Academy of Sciences(2015)
22 (李佳君, 金刚石表面金属花样化的制备研究, 硕士学位论文, 中国科学院大学(2015))
23 FENG Ruo, LI Huamao, Sonochemistry and Its Application, (Anhui, Anhui Science and Technology Press, 1992) p.87
23 (冯若, 李化茂, 声化学及其应用, (安徽, 安徽科学技术出版社, 1992)p.87)
24 ZHANG Bin, Synthesis, microstructureandpropertiesofseveral low-dimensionalmaterials, DoctoralDissertation, Dongbei University(2006)
24 (张滨, 几种低维材料的制备、微结构与性能, 博士学位论文, 东北大学 (2006))
doi: 10.7666/d.y852295
25 JI Wenmei, FANG Tong, CHEN Qisong, Mechanical Vibrations, (Beijing, Science Press, 1985) p.54
25 (季文美, 方同, 陈松淇, 机械振动, (北京, 科学出版社, 1985) p.54)
26 ZHANG Guangping, Study ofthecrackinitiation behavior and its mechanism of thinmetal films under cyclic loading, Journal of Mechanical Strength, 26(S), 5(2004)(张广平, 循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究, 机械强度, 26(S), 5(2004))
27 G. P. Zhang, C. A. Volkert, R. Schwaiger, R. Mönig, O. Kraft, Fatigue and thermal fatigue damage analysis of thin metal films, Microelectronics Reliability, 47(12), 2007(2007)
doi: 10.1109/ESIME.2006.1644037
28 ZHANG Bin, SUN Kaihong, GONG Jun, SUN Chao, CAI Qingkui, ZHANG Guangping, Tensile properties of 100 nm thick Cu films, Chinese Journal of Materials Research, 20(1), 29(2009)
28 (张滨, 孙恺红, 宫骏, 孙超, 才庆魁, 张广平, 100 nm 厚铜薄膜的拉伸性能, 材料研究学报, 20(1), 29(2009))
29 GONG Hengfeng, Study on the Cu clusters formation film and amorphous Ge induced-irradiation by using molecular simulation method, Doctor Dissertation, Lanzhou University(2006
29 ) (龚恒风, 分子动力学模拟方法研究铜团簇成膜及非晶化锗材料的辐照损伤, 博士学位论文, 兰州大学 (2013))
30 D. S. Knight, W. B. White, Characterization of diamond films by Raman spectroscopy. Journal of Materials Research, Journal of Materials Research, 4(2), 385(1989)
doi: 10.1557/JMR.1989.0385
31 D. F. Bahr, D. V. Bucci, L. S. Schadler, J. A. Last, J. Heberlein, E. Pfender, W.W. Gerberich, Characterization of d.c.jet CVD diamond films on molybdenum, Diamond and Related Materials, 5(12), 1462(1996)
doi: 10.1016/S0925-9635(96)00567-5
32 PAN Cunhai, DU Sumei, LI Heng, LI Junyue, XU Yinghui, Metallization on CVD diamond substrates for thermal management, Transactions of Materials and Heat Treatment(China), 24(1), 59(2003)
32 (潘存海, 杜素梅, 李恒, 李俊岳, 徐英惠, CVD 金刚石膜热沉表面金属化, 材料热处理学报, 24(1), 59(2003))
doi: 10.3969/j.issn.1009-6264.2003.01.013
33 S. H. Seo, W. C. Shin, J. S. Park, A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications, Thin Solid Films, 416(1), 190(2002)
doi: 10.1016/S0040-6090(02)00725-3
34 M. Fagerlind, I. Booker, P. Bergman, E. Janzén, H. Zirath, N. Rorsman, Influence of large-aspect-ratio surface roughness on electrical characteristics of AlGaN/AlN/GaN HFETs, IEEE Transactions on Device and Materials Reliability, 12(3), 538(2012)
doi: 10.1109/TDMR.2012.2188403
35 H. T. Young, H. T. Liao, H. Y. Huang, Surface integrity of silicon wafers in ultra precision machining, International Journal of Advanced Manufacturing Technology, 29(3), 372(2006)
[1] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[3] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[4] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[5] 刘明, 伍家楠. 圆锥压头递增载荷对材料的划痕行为[J]. 材料研究学报, 2022, 36(3): 191-205.
[6] 杨雅娜, 陈文革, 薛元琳. 碳纤维表面溅射金属增强铜基复合材料的界面结合[J]. 材料研究学报, 2021, 35(6): 467-473.
[7] 张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
[8] 宋贵宏, 李秀宇, 李贵鹏, 杜昊, 胡方. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.
[9] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[10] 谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(4): 272-276.
[11] 王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.
[12] 刘晓东,谈淑咏,霍文燚,张旭海,邵起越,方峰. 氮流量比对磁控溅射(CoCrFeNi)Nx高熵合金薄膜的组织和性能的影响[J]. 材料研究学报, 2019, 33(3): 185-190.
[13] 邱万奇, 王书林, 程奕天, 刘仲武, 钟喜春, 焦东玲, 周克崧. 低温反应溅射沉积α-(Al,Cr)2O3[J]. 材料研究学报, 2018, 32(4): 278-282.
[14] 王丽, 郭鹏, 左潇, 张栋, 黄美东, 柯培玲, 汪爱英. 基体偏压对HiPIMS制备非晶碳膜结构和光电性能的影响[J]. 材料研究学报, 2018, 32(4): 283-289.
[15] 王艳雪, 李瑞武, 范巍, 郭媛媛, 周艳文, 吴法宇. 退火氧分压对AZO薄膜的透光和导电性能的影响[J]. 材料研究学报, 2018, 32(11): 861-866.