Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 538-644    DOI: 10.11901/1005.3093.2015.746
  本期目录 | 过刊浏览 |
石墨化改性晶须状碳纳米管及其电容特性*
聂艳艳, 孙晓刚(), 蔡满园, 吴小勇, 刘珍红, 岳立福
南昌大学机电工程学院 南昌 330031
Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors
NIE Yanyan, SUN Xiaogang**(), CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu
School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
引用本文:

聂艳艳, 孙晓刚, 蔡满园, 吴小勇, 刘珍红, 岳立福. 石墨化改性晶须状碳纳米管及其电容特性*[J]. 材料研究学报, 2016, 30(7): 538-644.
Yanyan NIE, Xiaogang SUN, Manyuan CAI, Xiaoyong WU, Zhenhong LIU, Lifu YUE. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. Chinese Journal of Materials Research, 2016, 30(7): 538-644.

全文: PDF(4857 KB)   HTML
摘要: 

用CVD法合成晶须状碳纳米管(WCNTs), 对其进行石墨化纯化处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱和热重分析(TGA)对其进行表征。以纤维素为基体材料, WCNTs为功能材料, 将分散好的WCNTs与纸纤维混合, 抽滤制成WCNTs复合纸, WCNTs复合纸的电导率由石墨化前14.1 S/m提升到石墨化后325.1 S/m。采用两电极体系, 以1 mol/L LiPF6为电解液, 通过循环伏安及恒流充放电方法来研究WCNTs复合纸为极片的超级电容器性能, 在扫描速率为1 mV/s时, 石墨化WCNTs复合纸电极的比容量达到90 F/g。在电流密度为800 mA/g时, 比能量和比功率分别为21.3 Wh/kg和2.1 kW/kg, 表现出良好的超级电容器性能。

关键词 复合材料碳纳米管石墨化复合纸超级电容器    
Abstract

Whisker-like carbon nanotubes (WCNTs) were produced by chemical vapor deposition (CVD) and then purified by graphitization at high temperature. The WCNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and thermogravimetric analysis (TGA). Water suspension consisted of WCNTs as functional material and cellulose fibers as matrix was prepared by speed-cutting procedure, and then WCNTs containing composite papers were prepared with the above suspension by vacuum filtration. The conductivity of the composite papers increased from 14.1 S/m to 325.1 S/m after incorporation of the graphitized WCNTs. A supercapacitor cell with two-electrodes was constructed with 1 mol/L LiPF6 as electrolyte. The electrochemical performance of supercapacitor was examined by cyclic voltammetry and galvanostatic charge/discharge. The results indicated that the supercapacitor has a maximum capacitance of 90 F/g by a scan rate of 1 mV / s. The specific energy and specific power reached 21.3 Wh/kg and 2.1 kW/kg respectively by a current density of 800 mA/g. These showed an excellent application prospect of the modified carbon nanotubes for supercapacitors.

Key wordscomposite materials    whisker-like carbon nanotubes    graphitization    composite paper    supercapacitor
收稿日期: 2015-12-20     
基金资助:* 江西省教育厅项目KJLD13006和江西省科技厅科研项目2012ZBBE50012和 20142BBE50071资助
作者简介: null

本文联系人: 孙晓刚, 教授

图1  WCNTs SEM像、石墨化处理前后WCNTs TEM像及WCNTs复合纸像
Sample Surface resistivity
/Ωsq-1
Conductivity
/Sm-1
Graphitized WCNTs paper 6.2 325.2
Raw WCNTs paper 141.2 14.1
表1  石墨化与未石墨化WCNTs复合纸表面电阻和电导率
图2  石墨化WCNTs复合纸SEM像
图3  石墨化处理前后的WCNTs XRD和 Raman图谱
图4  石墨化处理前后WCNTs EDS图谱
图5  石墨化处理前后WCNTs TGA图谱
图6  石墨化处理前后WCNTs复合纸电极循环伏安曲线和不同扫描速率比容量对比
图7  石墨化前后WCNTs复合纸电极恒流充放电和不同电流密度下比容量对比
图8  石墨化处理前后WCNTs复合纸电极比能量与比功率
1 B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York Springer Science & Business Media, 2013)p.11
2 S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
3 J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A, 69(3), 255(1999)
4 B. I. Yakobson, P. Avouris, Mechanical Properties of Carbon Nanotubes (Berlin, Springer Berlin Heidelberg, 2001) p.287
5 R. S. Ruoff, D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925(1995)
doi: 10.1016/0008-6223(95)00021-5
6 T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature, 354(6586), 54(1996)
doi: 10.1038/382054a0
7 HE Tianbing, HU Renwei, HE Xiaolei, LI Peiyong, Progress in research on carbon nanotube reinforced metal matrix composites, J .Mater. Eng., 43(10), 91(2015)
7 (何天兵, 胡仁伟, 何晓磊, 李沛勇, 碳纳米管增强金属基复合材料的研究进展, 材料工程, 43(10), 91(2015))
doi: 10.11868/j.issn.1001-4381.2015.10.015
8 LIU Gu, WANG Liuying, CHEN Jianliang, WANG Wei, WU Yongfa, Progress in research on carbon nanotubes microware absorbers, J. Mater. Eng., 43(1), 104(2015)
8 (刘顾, 汪刘应, 程建良, 王炜, 吴永发, 碳纳米管吸波材料研究进展, 材料工程, 43(1), 10(2015))
doi: 10.11868/j.issn.1001-4381.2015.01.018
9 P. X. Hou, C. Liu, H. M. Cheng, Purification of carbon nanotubes, Carbon, 46(15), 2003(2008)
doi: 10.1016/j.carbon.2008.09.009
10 S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, Purification of carbon nanotubes grown by thermal CVD, Physica E, 37(1), 58(2007)
doi: 10.1016/j.physe.2006.07.014
11 LI Chensha, CAO Maosheng, HU Xiaoqing, LU Weizhe, LI Zhi, LIANG Ji, LIU Haitao, QIU Chengjun, ZHANG Jingdong, High temperature graphitizing carbon nanotube, carbon nanotube, Aeronautical Manufacturing Technology, (3), 37(2003)
11 (李辰砂, 曹茂盛, 胡晓清, 卢伟哲, 李志, 梁吉, 刘海涛, 邱成军, 张景东, 碳纳米管粉体的高温石墨化处理, 航空制造技术, (3), 37(2003))
12 V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46(6), 833(2008)
doi: 10.1016/j.carbon.2008.02.012
13 M. F.De Volder, S. H. Tawfick, R. H. Baughman, R. H. Baughman, A. J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339(6119), 535(2013)
14 Y. J. Kang, H. Chung, C. H. Han, W. Kim, All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes, Nanotechnol, 23(6), 065401(2012)
doi: 10.1088/0957-4484/23/6/065401 pmid: 22248712
15 S. Hu, R. Rajamani, X. Yu, Flexible solid-state paper based carbon nanotube supercapacitor, Appl. Phys. Lett., 100(10), 104103(2012)
doi: 10.1063/1.3691948
16 L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, PNAS, 106(51), 21490(2009)
doi: 10.1073/pnas.0908858106 pmid: 19995965
17 Y. J. Kang, B. Kim, H. Chung, W. Kim, Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers, Synth. Met., 160(23), 2510(2010)
doi: 10.1016/j.synthmet.2010.09.036
18 XU Bin, WU Feng, SU Yuefeng, CAO Gaoping, CHEN Shi, YANG Yusheng, Preparation of activated carbon nanotubes and their elrctrochemical capacitive performance in organic electrolyte, Acta Chim. Sin., 65(21), 2387(2007
18 )(徐斌, 吴锋, 苏岳锋, 曹高萍, 陈实, 杨裕生, 活性碳纳米管的制备及其在有机电解液中的电容性能研究, 化学学报, 65(21), 2387(2007))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.