Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (7): 517-522    DOI: 10.11901/1005.3093.2014.438
  本期目录 | 过刊浏览 |
SA/PAM/GO纳米复合水凝胶的制备和性能
刘翠云1,2,高喜平1,2,刘捷1,汤克勇1(),陆昶2,张玉清2
1. 郑州大学材料科学与工程学院 郑州 450052
2. 河南科技大学化工与制药学院 洛阳 471003
Preparation and Properties of Sodium Alginate/Polyacrylamide/Graphene Oxide Nanocomposite Hydrogels
Cuiyun LIU1,2,Xiping GAO1,2,Jie LIU1,Keyong TANG1,**(),Chang LU2,Yuqing ZHANG2
1. College of Materials and Engineering, Zhengzhou University, Zhengzhou 450052, China
2. School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology,Luoyang 471003, China
引用本文:

刘翠云,高喜平,刘捷,汤克勇,陆昶,张玉清. SA/PAM/GO纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2015, 29(7): 517-522.
Cuiyun LIU, Xiping GAO, Jie LIU, Keyong TANG, Chang LU, Yuqing ZHANG. Preparation and Properties of Sodium Alginate/Polyacrylamide/Graphene Oxide Nanocomposite Hydrogels[J]. Chinese Journal of Materials Research, 2015, 29(7): 517-522.

全文: PDF(3136 KB)   HTML
摘要: 

用原位聚合法制备海藻酸钠(SA)/聚丙烯酰胺(PAM)/氧化石墨烯(GO)纳米复合水凝胶, 用X射线衍射、原子力显微镜、红外光谱、热失重、扫描电镜等手段对GO及复合水凝胶的结构与性能进行表征, 研究了GO含量对材料的结构、机械性能及溶胀性能的影响。结果表明:在聚合物体系中均匀分散的GO片层提高了分子之间的相互作用, 并参与形成凝胶网络, 显著提高了材料的强度与韧性。与纯SA/PAM凝胶相比, 拉伸强度和断裂伸长率提高了近200%, 压缩强度从2.95 MPa提高到4.3 MPa, 而溶胀率随着GO量的增加呈先上升后下降的趋势, 随着SA含量的增加呈上升趋势。

关键词 复合材料海藻酸钠聚丙烯酰胺氧化石墨烯水凝胶力学性能    
Abstract

Nanocomposite hydrogels of sodium alginate (SA) / polyacrylamide (PAM)/ graphene oxide (GO) were prepared by in situ polymerization.The structure and properties of hydrogels were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy(FTIR) and thermogravimetric analysis (TG). The effect of GO content on the chemical structure, mechanical and swelling properties of the hydrogels was investigated. The results show that the well exfoliated GO flakes could be uniformly dispersed in the polymer matrix, therewith the intermolecular interactions between the components might be enhanced and parts of PAM macromolecules chains were probably grafted onto the GO nanosheets, which in turn changed the microstructure of the hydrogels and resulted in significant enhancement of mechanical properties of the composite hydrogels. As a result, in comparison with the two hydrogeles of pure SA and pure PAM, the prepared composite hydrogels exhibited both of higher tensile strength and breaking elongation up to 200%, as well as a higher compressive strength up to 156%. The swelling capacity of the composite hydrogels increased and then declined with the increasing GO content, while increased with the increasing SA content.

Key wordscomposites    sodium alginate    polyacrylamide    graphene oxide    hydrogel    mechanical property
收稿日期: 2014-08-21     
基金资助:* 国家自然科学基金50973097,21076199资助项目。
图1  GO片层的AFM像及高度曲线
图2  石墨、氧化石墨及不同量SA/PAM/GO水凝胶的XRD谱
图3  SA1/PAM 及不同GO用量SA1/PAM/GO凝胶的红外光谱
图4  GO及不同GO含量SA1/PAM/GO干凝胶的TG曲线
图5  不同GO含量SA1/PAM/GO水凝胶的SEM像
图6  GO及SA用量对SA/PAM/GO水凝胶溶胀率的影响
图7  不同GO含量SA1/PAM/GO水凝胶的拉伸及压缩应力-应变曲线
1 K. Y. Lee, D. J. Mooney,Hydrogels for tissue engineering, Chemical Review, 101(7), 1869(2001)
2 LIU Miaomiao,SU Haijia, TAN Tianwei. Synthesis and properties of thermo- and pH-sensitive poly(N-isopropylacrylamide)/polyaspartic acid IPN hydrogels, Carbohydrate Polymers, 87, 2425(2012)
3 YANG Yuxia, YANG Huaiyu,Preparation of polyacrylic acia type hydrogel and its pH sensitive behavior in alkaline solution, Chinese Journal of Materials Research, 26(1), 85(2012)
3 (杨玉霞, 杨怀玉, 聚丙烯酸类水凝胶的制备及其在碱性溶液中的pH敏感性, 材料研究学报, 26(1), 85(2012))
4 BAO Yan,MA Jianzhong, LI Na, Synthesis and swelling behaviors of sodium carboxymethylcellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel, Carbohydrate Polymers, 84, 76(2011)
5 SUN Jeong-Yun,ZHAO Xuanhe, Widusha R. K. Illeperuma, Ovijit Chaudhuri, Kyu Hwan Oh, Highly stretchable and tough hydrogels, Nature, 489, 133(2012)
6 CHEN Qingrui,LIU Chang, JIANG Guoqing, LIU Xiaoli, YANG Meng, ZHANG Dan, LIU Fengqi, Studies on swelling behavior of poly(acrylic acid-co-octadecyl methacrylate) hydrophobic association hydrogels with high mechanical properties , Acta Polymerica Sinica, 6, 797(2010)
6 (陈清瑞, 刘 畅, 姜国庆, 刘晓丽, 杨 猛, 张 丹, 刘凤岐, 高机械性能的聚(丙烯酸-co-甲基丙烯酸十八酯)疏水缔合凝胶的溶胀行为研究, 高分子学报, 6, 797(2010))
7 Jeffrey R. Potts, Daniel R. Dreyer,Christopher W. Bielawski, Rodney S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5(2011)
8 WANG Ming,ZHANG Panpan, BAI Xiaoyu, Mechanical and thermal stabilization properties of the poly(vinyl chloride)/graphene oxide film, Chinese Journal of Materials Research, 26(4), 390(2012)
8 (王明, 张盼盼, 白晓玉, 聚氯乙烯/氧化石墨烯薄膜力学性能和热稳定性能, 材料研究学报, 26(4), 390(2012))
9 SUI Zhuyin,ZHANG Xuetong, LEI Yu, LUO Yunjun, Easy and green synthesis of reduced graphite oxide-based hydrogels, Carbon, 49, 4314(2011)
10 XU Yuxi,HONG Wenjing, BAI Hua, LI Chun, SHI Gaoquan, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon, 47, 3538(2009)
11 ZHANG Lu,WANG Zhipeng, XU Chen, LI Yi, GAO Jianping, WANG Wei and LIU Yu, High strength graphene oxide/polyvinyl alcohol composite hydrogels, J. Mater. Chem., 21, 10399(2011)
12 SHEN Jianfeng,YAN Bo, LI Tie, LONG Yu, LI Na and YE Mingxin, Mechanical, thermal and swelling properties of poly (acrylic acid)-grapheme oxide composite hydrogels, Soft Matter, 8, 1831(2012)
13 V. Dhanapal, K. Subramanian,Recycling of textile dye using double network polymer from sodiumalginate and superabsorbent polymer, Carbohydrate Polymers, 108, 65(2014)
14 Azam Rashidzadeh,Ali Olad, Dariush Salari, On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-poly(acrylic acid-co-acrylamide)/ clinoptilolite and its application as slow release fertilizer, J. Polym. Res., 21, 344(2014)
15 WANG Yizhe,WANG Wenbo, WANG Aiqin, Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay, Chemical Engineering Journal, 228, 132(2013)
16 LI Zhiqiang,SHEN Jianfeng, MA Hongwei, LU Xin, SHI Min, LI Na and YE Mingxin, Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker, Soft Matter, 8, 3139(2012)
17 ZHANG Nana,LI Ruqiang, ZHANG Lu, CHEN Huabin, WANG Wenchao, LIU Yu, WU Tao, WANG Xiaodong, WANG Wei, LI Yi, ZHAO Yan, GAO Jianping, Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization, Soft Matter, 7, 7231(2011)
18 MA Xiaomei,LI Yanhong , WANG Wenchao, JI Quan , XIA Yanzhi, Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior, European Polymer Journal, 49, 389(2013)
19 LIU Ruiqiong,LIANG Songmiao, TANG XiuZhi, YAN Dong, LI Xiaofeng, YU ZhongZhen, Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels, J. Mater. Chem., 22, 14160(2012)
20 WANG Wenbo,WANG Aiqin, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone, Carbohydrate Polymers, 80, 1028(2010)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.