Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 390-395    
  研究论文 本期目录 | 过刊浏览 |
聚氯乙烯/氧化石墨烯薄膜的力学性能和热稳定性能
王明,张盼盼,白晓玉
西南大学化学化工学院 重庆 400715
Mechanical and Thermal Stabilization Properties of the Poly(vinyl chloride)/Graphene Oxide Film
WANG Ming, ZHANG Panpan,BAI Xiaoyu
School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715
引用本文:

王明 张盼盼 白晓玉. 聚氯乙烯/氧化石墨烯薄膜的力学性能和热稳定性能[J]. 材料研究学报, 2012, 26(4): 390-395.
, , . Mechanical and Thermal Stabilization Properties of the Poly(vinyl chloride)/Graphene Oxide Film[J]. Chin J Mater Res, 2012, 26(4): 390-395.

全文: PDF(975 KB)  
摘要: 通过溶液共混法制备了氧化石墨烯(GO)分散均匀的聚氯乙烯(PVC)/GO纳米复合薄膜, 研究了薄膜的力学性能和热稳定性能。结果表明, 微量GO能大幅度提高PVC的模量和拉伸强度, 且保持较高的断裂伸长率。在PVC中添加质量分数为0.12%的GO, PVC的拉伸强度提高63%, 杨氏模量提高20%;添加量为0.60%时, PVC的拉伸强度提高125%, 杨氏模量提高126%。添加GO还能提高PVC的起始分解温度、最大分解温度以及PVC的成碳量。GO片层具有较高的强度和模量、GO在高分子基体内的均匀分散、GO和PVC之间较强的相互作用、GO与PVC的层状结构, 是其力学性能提高的主要原因。
关键词 有机高分子材料聚氯乙烯氧化石墨烯力学性能热稳定性    
Abstract:The poly(vinyl chloride) (PVC)/graphene oxide sheets (GO) nanofilms with GO well dispersion were prepared by a solution mixing method. The mechanical and thermal properties of these films were investigated. The results show that the Young’s modulus and the tensile strength of PVC are obviously improved and the high strain at break of PVC is maintained by adding small amount of GO. The tensile strength of PVC has 63% enhancement and the Young’s modulus has 20% enhancement when adding 0.12wt% GO, and the tensile strength increase 125% and the Young’s modulus increase 126% for PVC with 0.6wt% GO. Furthermore, the start decomposition temperature, the maximal decomposition temperature and the char amount of PVC increase in the presence of GO. The higher strength and modulus of GO sheet layer, homodisperse of GO in the PVC matrix, stronger interaction between GO and PVC, layer structure of GO and PVC, result in increase of mechanical propertyies.
Key wordsorganic polymer materials    poly(vinyl chloride)    graphene oxide    mechanical property    thermal stability
收稿日期: 2012-04-12     
ZTFLH: 

TB324

 
基金资助:

国家自然科学基金51103119和重庆市科委自然科学基金CSTC2010BB4009资助项目。

1 K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, A. A .Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666 (2004)

2 H.Kim, A.A.Abdala, C.W.Macosko, Graphene/polymer nanocomposites, Macromolecules, 43, 6515(2010) 

3 M.J.Allen, V.C.Tung, R.B.Kaner, Honeycomb carbon: a review of graphene, Chemical Reviews, 110, 132–145(2010)

4 C.Lee, X.Wei, J.W.Kysar, J.Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385(2008)

5 Y.B.Zhang, Y.W.Tan, H.L.Stormer, P.Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438, 201(2005)

6 S.Stankovich, D.A.Dikin, G.H.B.Dommett, K.M.Kohlhaas, E.J.Zimney, E.A.Stach, R.D.Piner, S.T.Nguyen, R.S.Ruoff, Graphene-based composite materials, Nature, 442, 282(2006)

7 J.J.Liang, Y.Huang, L.Zhang, Y.Wang, Y.F.Ma, T.Y.Guo, Y.S.Chen, Molecular–Level Dispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Advanced Functional Materials, 19, 2297(2009)

8 A.Yu, P.Ramesh, M.E.Itkis, E.Bekyarova, R.C.Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials, The Journal of Physical Chemistry C, 111, 7565(2007)

9 A.Yu, P.Ramesh, X.Sun, E.Bekyarova, M.E.Itkis, R.C.Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites, Advanced Materials, 20, 4740(2008)

10 H.Kim, Y.Miura, C.W.Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chemistry of Materials, 22, 3441(2010)

11 H.Kim, C.W.Macosko, Processing-property relationships of polycarbonate/graphene composites, Polymer, 50, 3797(2009)

12 A.Dasari, Z.Z.Yu, Y.W.Mai, G.P.Cai, H.H.Song, Roles of graphite oxide, clay and POSS during the combustion of polyamide 6, Polymer, 50, 1577(2009)

13 S.Vadukumpully, J.Paul, N.Mahanta, S.Valiyaveettil, Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, 49, 198(2011)

14 H.J.Salavagione, G. Mart´?nez, Importance of Covalent Linkages in the Preparation of Effective Reduced Graphene Oxide-Poly (vinyl chloride) Nanocomposites,Macromolecules, 44, 2685(2011)

15 W.S.Hummers Jr, R.E.Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80, 1339(1958)

16 T.Szabo, O.Berkesi, I.Dekany, DRIFT study of deuteriumexchanged graphite oxide, Carbon, 43(15), 3186(2005) 

17 D.C.Marcano, D.V.Kosynkin, J.M.Berlin, A.Sinitskii, Z.Sun, A.Slesarev, L.B.Alemany, W.Lu, J.M.Tour, Improved Synthesis of Graphene Oxide, ACSNano, 4(8), 4806(2010)

18 Y.Lin, J.Wang, D.G.Evans, D.Q.Li, Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin, Journal of Physics and Chemistry of Solids, 67, 998(2006)

19 T.Yoshioka, T.Akama, M.Uchida, A.Okuwaki, Analysis of two stages dehydrochlorination of poly (vinyl chloride) using TG-MS, Chemistry Letters, 29, 322(2000)

20 Y.Ning, S.Guo, Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC, Journal of Applied Polymer Science, 77, 3119 (2000)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.