Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 125-131    
  研究论文 本期目录 | 过刊浏览 |
无镍不锈钢冠脉支架力学行为的有限元模拟
毛志刚1,2, 谭丽丽2, 郑 丰2, 黄洁雯1, 樊新民1, 杨柯2
1.南京理工大学 南京 210094
2.中国科学院金属研究所 沈阳 110016
Finite Element Analysis on Mechanical Behaviors of Nickel-Free Stainless Steel Coronary Stent
MAO Zhigang,TAN Lili,ZHENG Feng,HUANG Jiewen,FAN Xinmin,YANG Ke
1.Nanjing University of Science and Technology, Nanjing, 210094
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

毛志刚 谭丽丽 郑丰 黄洁雯 樊新民 杨柯. 无镍不锈钢冠脉支架力学行为的有限元模拟[J]. 材料研究学报, 2012, 26(2): 125-131.
, , , , , . Finite Element Analysis on Mechanical Behaviors of Nickel-Free Stainless Steel Coronary Stent[J]. Chin J Mater Res, 2012, 26(2): 125-131.

全文: PDF(896 KB)  
摘要: 以无镍不锈钢为支架材料, 以冠脉支架结构为研究对象, 对其压缩和扩张过程中的力学行为和柔顺性能进行了模拟计算, 研究了支架压握并扩张后的轴向回弹率、径向回弹率以及不同端部网丝宽度支架的变形行为, 计算出支架的弯矩--挠度曲线及支架的柔软度。结果表明, 所研究的无镍不锈钢支架具有较小的轴向与径向回弹率,
在变形过程中表现出良好的弹性弯曲变形性能。
关键词 材料科学基础学科无镍不锈钢 冠脉支架 力学行为 有限元模拟    
Abstract:The mechanical behaviors during crimping and expansion as well as the flexibility of coronary stent made of nickel-free stainless steel were simulated in this paper. The longitudinal recoil, radial recoil and the deformation behavior in crimping and expansion for different stent mesh width were investigated. The moment-deflection curve and flexibility of the stent were calculated. The results show that the nickel-free stainless steel stent has smaller longitudinal and radial recoil, and excellent flexibility in elastic bending deformation process.
Key wordsfoundational discipline in materials science    nickel-free stainless steel    coronary stent    mechanical behaviors    finite element method
收稿日期: 2011-04-25     
ZTFLH: 

TG142

 
基金资助:

国家重点基础研究发展计划(973)2012CB619101资助项目。

1 REN Yibin, YANG Ke, ZHANG Bingchun, YANG Huibin, Study of a New Medical Stainless Steel, Journal of Biomedical Engineering, 23(5), 1101(2006)

(任伊宾, 杨  柯, 张炳春, 杨慧宾, 新型医用不锈钢研究, 生物医学工程杂志, 23(5), 1101(2006))

2 WAN Peng, REN Yibin, ZHANG Bingchun, YANG Ke, Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial, Material Science and Engineering C, 30, 1183(2010)

3 M.Sumita, T.Hanawa, S.H.Teoh, Development of nitrogen-containing nickel-free austenitic stainless steels for biomaterials-review, Material Science and Engineering C, 24, 753(2004)

4 Houman Zahedmanesh, Daniel John Kelly, Caitriona Lally, Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modeling strategy, Journal of Biomechanics, 43, 2126(2010)

5 Matthieu De Beule, Peter Mortier, Stephane G. Carlier, Benedict Verhegghe, Rudy Van Impe, Pascal Verdonck, Realistic finite element-based stent design: The impact of balloon folding, Journal of Biomechanics, 41,383(2008)

6 C.Lally, F.Dolan, P.J.Prendergast, Cardiovascular stent design and vessel stresses: a finite element analysis, Journal of Biomechanics, 38,1574(2005)

7 Kzauto Takashima, Takayuki Kitou, Koji Mori, Ken Ikeuchi, Simulation and experimental observation of contact conditions between stents and artery models, Medical Engineering&Physics, 29, 326(2007)

8 WANG WeiQiang, WANG Li, YANG Dazhi, QI Min, Design Optimization of Endovascular Stent by Finite Element Method, Journal of Biomedical Engineering, 25(2), 372(2008)

(王伟强, 王  丽, 杨大智, 齐民, 血管支架有限元优化设计, 生物医学工程杂志, 25(2), 372(2008))

9 Seung-Kwan Cho, Won-Pil Park, Eun-Jung Cho, Dohyung Lim, Han-Sung Kim and Jai-Young Ko, Comparative Studies of Different Vascular Stents in terms of Mechanical Performances: Finite Element Analysis, IFMBE Proceeding, 18, 744(2007)

10 Regis Rieu, Paul Barragan, Vincent Garitey, Pierre O. Roquebert, Jean Fuseri, Philippe Commeau and Joel Sainsous, Assessment of the Trackability, Flexibility, and Conformability

of Coronary Stent: A Comparative Analysis, Catheterization and Cardiovascular Intervention, 59, 496(2003)

11 KOJI MORI and TAKASHI SAITO, Effect of Stent Structure on Stent Flexibility Measurements, Annals of Biomedical Engineering, 33(6), 733(2005)

12 WU Wei, YANG Dazhi, QI Min, WANG Weiqiang, An FEA method to study flexibility of expanded coronary stents, Journal of Material Processing Technology, 184, 447(2007)

13 Lorenza Petrini, Francesso Migliavacca, Ferdinando Auricchio, Gabriele Dubini, Numerical investigate of intravascular coronary stent flexibility, Journal of Biomechanics, 37, 495(2004)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 吕晓仁, 陈骥驰, 乔赫廷, 王世杰. 砂粒形状对丁腈橡胶在含砂原油中磨损的影响及其力学行为[J]. 材料研究学报, 2018, 32(1): 65-72.
[10] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[11] 刘庆生,许真铭,汤卫东. 基于细观结构的铝电解阴极炭块钠扩散过程的数值分析和实验研究[J]. 材料研究学报, 2017, 31(3): 233-240.
[12] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[13] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[14] 张志超, 王玉敏, 李玉芳, 柏春光. SiC纤维增强钛基复合材料残余应力的数值模拟[J]. 材料研究学报, 2016, 30(5): 355-364.
[15] 赵浩川, 任伊宾, 刘文朋, 樊新民, 杨柯. 冷变形对00Cr18Mn15Mo2N0.9高氮无镍不锈钢摩擦磨损性能的影响*[J]. 材料研究学报, 2016, 30(3): 171-178.