Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 602-606    
  研究论文 本期目录 | 过刊浏览 |
ZrTiCoAl块体金属玻璃及其力学性能
高会利, 沈勇, 贺强, 徐坚
沈阳材料科学国家(联合)实验室 中国科学院金属研究所 沈阳 110016
ZrTiCoAl Bulk Metallic Glasses and Their Mechanical Properties
GAO Huili, SHEN Yong, HE Qiang, XU Jian
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016
引用本文:

高会利 沈勇 贺强 徐坚. ZrTiCoAl块体金属玻璃及其力学性能[J]. 材料研究学报, 2011, 25(6): 602-606.
, , , . ZrTiCoAl Bulk Metallic Glasses and Their Mechanical Properties[J]. Chin J Mater Res, 2011, 25(6): 602-606.

全文: PDF(930 KB)  
摘要: 利用``三维成分逐点优化法''在Zr--Ti--Co--Al四元合金中发现了具高玻璃形成能力的Zr55Ti2Co28Al15合金, 形成块体金属玻璃(BMG)棒材的临界直径可达到8 mm。相对于无Ti的Zr56Co28Al16三元BMG, Zr55Ti2Co28Al15四元BMG的玻璃转变温度Tg降低约9 K, 但其杨氏模量E、剪切模量μ、体模量B、泊松比v等弹性常数基本不变。Zr55Ti2Co28Al15BMG的压缩和拉伸断裂强度分别为1990 MPa和1690 MPa。
关键词 金属玻璃力学性能锆合金玻璃转变    
Abstract:Using “3D–pinpointing approach”, Zr55Ti2Co28Al15 alloy with high glass–forming ability (GFA) is discovered in quaternary Zr–Ti–Co–Al system, whose critical diameter for BMG formation reaches 8 mm. In comparison with Ti–free ternary Zr56Co28Al16 BMG, glass transition temperature (Tg) of Zr55Ti2Co28Al15 BMG decreases by about 9 K. Nevertheless, no significant difference is observed in the elastic constants such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio. Compressive fracture strength of Zr55Ti2Co28Al15 BMG is around 1990 MPa, while its fracture strength in tension is about 1690 MPa.
Key wordsmetallic glass    mechanical properties    zirconium alloys    glass–transition temperature
收稿日期: 2011-05-24     
ZTFLH: 

TB321

 
基金资助:

国家重点基础发展计划2007CB613906的项目资助。

1 W.L.Johnson, Bulk glass–forming metallic alloys: Science and technology, MRS Bulletin, 24(10), 42(1999)

2 A.Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(1), 279(2000)

3 J.Xu, U.Ramamurty, E.Ma, On the fracture toughness of bulk metallic glasses, Journal of Metals, 62(4), 10(2010)

4 J.Schroers, G.Kumar, T.M.Hodges, S.Chan, T.R.Kyriakides, Bulk metallic glasses for biomedical aplications, Journal of Metals, 61(9), 21(2009)

5 M.D.Demetriou, A.Wiest, D.C.Hofmann, W.L.Johnson, B.Han, N.Wolfson, G. Wang, P.K. Liaw, Amorphous metal for hard–tissue prosthsis, Journal of Metals, 62(2), 83(2010)

6 T.Wada, F.X.Qin, X.M.Wang, M.Yoshimura, A.Inoue, N.Sugiyama, R.Ito, N. Matsushita, Formation and bioactivation of Zr–Al–Co bulk metallic glasses, J. Mater. Res., 24(9), 2941(2009)

7 Q.He, Y.Q.Cheng, E.Ma, J.Xu, Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization, Acta Mater., 59(1), 202(2011)

8 H.Ma, L.L.Shi, J.Xu, Y.Li, E.Ma, Discovering inch–diameter metallic glasses in three–dimensional composition space, Appl. Phys. Lett., 87(18), 181915(2005)

9 L.Zhang, Y.Q.Cheng, A.J.Cao, J.Xu, E.Ma, Bulk metallic glasses with large plasticity: Composition design from the structural perspective, Acta Mater., 57(4), 1154(2009)

10 J.J.Lewandowski, W.H.Wang, A.L.Greer, Intrinsic plasticity or brittleness of metallic glasses, Phil. Mag. Lett., 85(2), 77(2005)

11 J.Schroers, W.L.Johnson, Ductile bulk metallic glass, Phys. Rev. Lett., 93(25), 255506(2004)

12 Y.Q.Cheng, A.J.Cao, E.Ma, Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition, Acta Mater., 57(11), 3253(2009)

13 H.Bei, Z.P.Lu, S.Shim, G.Chen, E.P.George, Speciemen size effects on Zr–based bulk metallic glasses investigated by uniaxial compression and spherical nanoindentation, Metall. Mater. Trans. A, 41(7), 1735(2010)

14 Z.F.Zhang, J.Eckert, L.Shultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(4), 1167(2001)

15 Z.Han, Y.Li, Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear–band instability perspective, J. Mater. Res., 24(12), 3620(2009)

16 Y.Q.Cheng, Z.Han, Y.Li, E.Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B, 80(13), 134115(2009)

17 S.X.Song, H.Bei, J.Wadsworth, T.G.Nieh, Flow serration in a Zr–based bulk metallic glass in compression at low strain rates, Intermetallics, 16(6), 813(2008)

18 C.A.Schuh, T.C.Hufnagel, U.Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater., 55(12), 4067(2007)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 朱雪冬, 张爽, 邹存磊, 刘林根, 朱智浩, 万鹏, 董闯. Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为[J]. 材料研究学报, 2023, 37(4): 281-290.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.