Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 413-416    
  研究论文 本期目录 | 过刊浏览 |
原位自生Ti--B--Si--C系复合材料的制备和性能
肖代红, 袁铁锤, 贺跃辉
中南大学粉末冶金国家重点实验室 长沙 410083
Synthesis and Performance of In–situ Ti–B–C–Si Composites
XIAO Daihong, YUAN Teichui, HE Yuehui
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083
引用本文:

肖代红 袁铁锤 贺跃辉. 原位自生Ti--B--Si--C系复合材料的制备和性能[J]. 材料研究学报, 2011, 25(4): 413-416.
, , . Synthesis and Performance of In–situ Ti–B–C–Si Composites[J]. Chin J Mater Res, 2011, 25(4): 413-416.

全文: PDF(713 KB)  
摘要: 以Ti粉、B4C粉和SiC粉为原料, 用真空热压烧结工艺制备了原位自生颗粒增强的Ti--B--Si--C系钛基复合材料, 研究了复合材料的显微组织和力学性能。结果表明, 使用的初始粉末不同, 原位自生颗粒的组成不同, 复合材料的性能也有明显的差别。
关键词 复合材料钛基复合材料原位自生力学性能    
Abstract:A in–situ Ti–B–C–Si composite with fine TiB2, TiC and Ti–Si phase dispersed in composite was synthesized using titanium, B4C and SiC powders using hot–pressing sintering. The microstructure and mechanical properties of the composite were observed by using X–ray diffraction (XRD) analysis, scanning electron microscope and mechanical property testing. The results show that starting powder reactants have much effect on in–situ phase content and mechanical properties in titanium matrix composites.
Key wordscomposites    titanium matrix composites    in–situ    mechanical properties
收稿日期: 2011-04-01     
ZTFLH: 

TB333

 
基金资助:

湖南省自然科学基金10JJ6066、粉末冶金国家重点实验室创新基金PM2010和国家自然科学基金50825102资助项目。

1 Tjong S C, Ma Z Y, Microstructure and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering R, 2000, 29: 49–113.

2 LU Weijie, ZHANG Xiaonong, ZHANG Di, Microstructure and mechanical properties of in situ synthesized (TiB+TiC)/Ti matrix composites, The Chinese Journal of Nonferrous Metals, 2000, 10 (2): 163–169

(吕维洁, 张小农, 张  荻, 原位合成TiC和TiB增强钛基复合材料微结构与力学性能, 中国有色金属学报, 2000, 10(2):163--169)

3 Dubey S, Li Y, Reece K, Fatigue crack growth in an in–situ titanium matrix composite, Materials Science and Engineering A, 1999, A266: 303–309

4 Radhakrishna Bhat B.V, Subramanyam J, Bhanu Prasad V.V, Preparation of Ti–TiB–TiC & Ti–TiB composites by in–situ reaction hot pressing, Materials Science and Engineering,

2002, A325: 126–130.

5 Lu W J, Zhang D, Zhang X N, Microstructural characterization of TiB in situ synthesized titanium matrix composites prepared by common casting technique, Journal of Alloys and Compounds, 2001, 327(1–2): 240–247.

6 Ni D R, Geng L, Zhang Z Z, Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system, Scripta Materialia, 2006, 55: 429–432

7 Yeh C L, Chen Y L, Combustion synthesis of TiC–TiB2 composites, Journal of Alloys and Compounds, 2008, 463: 373–377.

8 Yeh C L, Chen W H, Hsu C C, Formation of titanium silicates Ti5Si3 and TiSi2 by self–propagating combustion synthesis, Journal of Alloys and Compounds, 2007, 432: 90–95.

9 Gu D D, Hgedorn Y C, Meiners W, Wissenbach K, Poprawe R, Selective Laser Melting of in–situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance, Surface & Coating Technology, 2011, 205: 3285–3297.

10 Poletti C, Balog M, Schubert T, Liedtke V, Edtmaier C, Production of titanium matrix composites reinforced with SiC particles, Composites Science and Technology, 2008, 68: 2171–2177.

11 Zhang Z F, Sun Z M, Hashimoto H, Abe A, A new systhesis reaction of Ti3SiC2 through pluse discharge sintering Ti/SiC/TiC powder, Scripta Material, 2001, 45: 1461–1467.
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.