Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 332-336    
  研究论文 本期目录 | 过刊浏览 |
石墨/石蜡复合相变储热材料的热性能研究
张秀荣,朱冬生,高进伟,吴淑英
华南理工大学化学与化工学院强化传热与过程节能教育部重点实验室  广州 510640
Study on Thermal Properties of Graphtie/Paraffin Composites as Phase Change Heat Storage Material
 ZHANG  Xiu-Rong, SHU  Dong-Sheng, GAO  Jin-Wei, TUN  Chu-Yang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640
引用本文:

张秀荣, 朱冬生, 高进伟, 吴淑英. 石墨/石蜡复合相变储热材料的热性能研究[J]. 材料研究学报, 2010, 24(3): 332-336.
, , , . Study on Thermal Properties of Graphtie/Paraffin Composites as Phase Change Heat Storage Material[J]. Chin J Mater Res, 2010, 24(3): 332-336.

全文: PDF(823 KB)  
摘要: 

膨胀石墨(EG)在超声作用下解离成微米级石墨片层(MSGF), 并加入到石蜡基体中制备得到石墨/石蜡复合相变储热材料, 并对复合相变材料的结构和热性能进行表征。实验结果表明, 该石墨/石蜡复合相变储热材料储热速率加快, 化学性质稳定. 随MSGF质量分数的增加, 固态及液态复合材料的导热系数均呈非线性显著增长, 相变温度及相变潜热略有降低。

关键词 复合材料微米级石墨片层石蜡热性能相变储热材料    
Abstract

EG was exfoliated into MSGF under high-energy ultrasound, and then the graphite/paraffin composite was prepared by mixing MSGF into melted paraffin. The structure and thermal properties of the composites were characterized using SEM, Hot Disk, and DSC. The experimental results show that the composites exhibit both high thermal conductivity and good thermal storage capacity, the speed of heat storage is raised and the chemical properties are stable. Moreover, with the increase of MSGF’s mass fraction, the thermal conductivity behaves non-liner increase both in solid and liquid states. Meanwhile, the melting point and latent heat capacity show negligible decrease.

Key wordscomposites    micron-size graphite flake    paraffin    thermal properties    phase change heat storage material
收稿日期: 2010-03-01     
ZTFLH: 

TK512

 
基金资助:

国家自然科学基金20346001和广州市科技计划2008Z1-1061资助项目。

[1]V.Velraj, R.V.Seeinraj, B.Hafner, Heat transfer enhancement in a latent heat storage system, Sol. Energy, 65(3), 171(1999)
[2]X.F.Li, D.S.Zhu, X.J.Wang, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochimca Acta, 469(1-2), 98(2008)
[3]Wu S, Zhu D, Li X, Thermal energy storage behavior of Al2O3--H2O nanofluids, Thermochimca Acta, 483(1-2), 73(2009)
[4]J.L.Zeng, Z.Cao, D.W.Yang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim., 95(2), 507(2009)
[5]M.Fujii, X.Zhang, H.Xie, Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett, 95(6), 2(2005)
[6]K.Sun, M.A.Stroscio, M.Dutta, Graphite c-axis thermal conductivity, Superlattices and Microstruct, 45(2), 60(2009)
[7]ZHANG Zhengguo, WANG Xueze, FANG Xiaoming, Structure and thermal properties of composite paraffin/expand graphite phase-change material, Journal of South China University of Technology (Natural Science Edition), 34(3), 1(2006)
[8](张正国, 王学泽, 方晓明, 石蜡/膨胀石墨复合相变材料的结构与热性能, 华南理工大学学报(自然科学版), 34(3), 1(2006))
[9]K.Kim, Z.Yue, H.Jang, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457(7230), 706(2009)
[10] A.Novoselov, The rise of graphene, Nat. Mater, 6, 183(2007)
[11]T.Wei, Z.Fan, G.Luo, A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon, 47(1), 337(2009)
[12] M.Inagaki, T.Suwa, Pore structure analysis of exfoliated graphite using image processing of scanning electron micro-graphs, Carbon, 39, 915(2001)
[13]J.W.Gao, R.T.Zheng, H.Ohtani, Experimental investigation of heat conduction mechanisms in nanofluids-clue on clustering, Nano Lett., 9(12), 4128(2009)
[14] Jifen Wang, Huaqing Xie, Zhong Xin, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochimica Acta, 488, 39(2009)
[15]A.Sari, A.Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27(8-9), 1271(2007)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.