Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 225-231    
  研究论文 本期目录 | 过刊浏览 |
超临界CO2中CS--g--PDLLA的合成及其与PDLLA多孔支架材料的原位构建
罗炳红1,2,  程松1, 钟翠红1, 焦延鹏1,2, 周长忍1,2
1.暨南大学材料科学与工程系 广州 510632
2.暨南大学人工器官与材料教育部工程中心 广州 510632
Synthesis of CS--g--PDLLA Copolymer and {\it in-situ} Fabrication of CS--g--PDLLA/PDLLA Porous Scaffolds in Supercritical  Carbon Dioxide
LUO Binghong 1,2,   CHENG Song 1,  ZHONG Cuihong 1,  JIAO Yanpeng 1,2,  ZHOU Changren 1,2
1.Department of Materials Science and Engineering, Jinan University, Guangzhou 510632
2.Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632
引用本文:

罗炳红 程松 钟翠红 焦延鹏 周长忍. 超临界CO2中CS--g--PDLLA的合成及其与PDLLA多孔支架材料的原位构建[J]. 材料研究学报, 2010, 24(3): 225-231.
, , , , . Synthesis of CS--g--PDLLA Copolymer and {\it in-situ} Fabrication of CS--g--PDLLA/PDLLA Porous Scaffolds in Supercritical  Carbon Dioxide[J]. Chin J Mater Res, 2010, 24(3): 225-231.

全文: PDF(1301 KB)  
摘要: 

首先以辛酸亚锡为催化剂, 消旋丙交酯(D,L-LA)与壳聚糖(CS)为原料, 在超临界二氧化碳(scCO2)中合成了以PDLLA为基体、CS--g--PDLLA共聚物为填充相的共混体系, 然后通过scCO2萃取/致孔技术原位构建了CS--g--PDLLA/PDLLA多孔支架材料。对共聚物的结构与性能、PDLLA的分子量进行了表征, 对多孔支架的结构形态进行观察, 并对支架材料的孔隙率进行测定。结果表明, 以scCO2为反应介质, 成功合成了PDLLA均聚物和CS--g--PDLLA共聚物,同时, 通过改变原料比、反应温度和时间能在一定程度上调控共聚物的组成与PDLLA的分子量以及产率。CS--g--PDLLA/PDLLA多孔支架材料的孔洞分布均匀, 孔洞连通性较好, 孔内壁具有非常独特的长沟壑形微观结构, 且CS--g--PDLLA填充相与PDLLA基体的相容性良好; 减压速率和处理温度对多孔支架的结构形态有一定影响。

关键词 复合材料  超临界CO2   壳聚糖  聚乳酸  共聚  多孔支架 原位构建    
Abstract

Poly(D,L-lactide) (PDLLA) and chitosan--graft--poly(D,L-lactide) (CS--g--PDLLA) copolymer were synthesized firstly in supercritical carbon dioxide (scCO2) using D,L-lactide and chitosan as raw materials and tin (II) 2--ethylhexanoate as catalyst. Then, CS--g--PDLLA/PDLLA porous scaffolds were prepared in-situ by scCO2 extraction/pore forming technologies. The structure and properties of the graft copolymers and the molecular weight of PDLLA were characterized. The porous structure morphology of the scaffolds was observed and the porosity of the scaffolds was measured. The results showed that PDLLA and CS--g--PDLLA were synthesised successfully in scCO2 fluid, and the structure of the graft copolymer, the molecular weight and yield of PDLLA can be adjusted by controlling the feeding ratio, reaction temperature and time. Uniformly distributed and highly interconnected pore structures with a unique long gully type microstructure were formed in the CS--g--PDLLA/PDLLA scaffolds, and the compatibility of CS--g--PDLLA with PDLLA was good. Moreover, the depressurization rate and temperature have effects on the structure morphology of the porous scaffolds.

Key wordscomposites    supercritical carbon dioxide (scCO2)     chitosan    poly(D,L-lactide)    copolymerization    porous scaffolds    in situ fabrication
收稿日期: 2010-02-01     
ZTFLH: 

O636

 
基金资助:

国家自然科学基金项目30500128, 国家科技部高技术研究计划项目2007AA091603, 暨南大学“211“生物材料与组织工程”平台创新基金项目50621030资助。

[1]J.E.Bergsma, F.R.Rozema, R.R.M.Bos, G.Boering, W.C.de Bruijn, A.J.Pennings, In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles, Biomaterials, 16(4), 267(1995)
[2]V.Has?rc?, K.Lewandrowski, J.D.Gresser, D.L.Wise, D.J.Trantolo, Versatility of biodegradable biopolymers: degradability and an in vivo application, Journal of Biotechnology, 86(2), 135(2001)
[3]J.C.Middleton, A.J.Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 21(23), 2335(2000)
[4]N.V.Majeti, R.Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers, 46(1), 1(2000)
[5]S.E.Kim, J.H.Park, Y.W.Cho, H.Chung, S.Y.Jeong, E.B.Jee, Porous chitosan scaffold containing microspheres loaded with transforming growth factor–β1: Implications for cartilage tissue engineering, Journal of Controlled Release, 91(3), 365(2003)
[6]X.Qu, A.Wirsen, A.C.Albertsson, Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-Lactic acid, Journal of Applied Polymer Science, 74(13), 3193(1999)
[7]Y.Liu, F.Tian, K.A.Hu, Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan, Carbohydrate Research, 339(4), 845(2004)
[8]D.D.Hile, M.V.Pishko, Solvent-free protein encapsulation within biodegradable polymer foams, Drug Delivery, 11(4), 287(2004)
[9]G.E.Luckachan, C.K.S.Pillai, Chitosan/oligo L-lactide graft copolymers:Effect of hydrophobic side chains on the physico-chemical properties and biodegradability, Carbohydrate Polymers, 64(2), 254(2006)
[10]H.Feng, C.M.Dong, Synthesis and characterization of phthaloyl-chitosan-g-poly(L-lactide) using an organic catalyst, Carbohydrate Polymers, 70(3), 258(2007)
[11]Y.Wu, Y.L.Zheng, W.L.Yang, C.C.Wang, J.H.Hu, S.K.Fu, Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer, Carbohydrate Polymers, 59(2), 165(2005)
[12]A.Galia, R.D.Gregorio, G.Spadaro, O.Scialdone, G.Filardo, Grafting of maleic anhydride onto isotactic polypropylene in the presence of supercritical carbon dioxide as a solvent and swelling fluid, Macromolecules, 37(12), 4580(2004)
[13]D.Bratton, M.Brown, S.M.Howdle, Suspension polymerization of L-Lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer, Macromolecules, 36(16), 5908(2003)
[14]LI Qianqian, LU Qiwen, LI Lihua, ZHOU Changren, A new preparition process of natural bone material and its characterization, Joural of Biomedical Engineering, 24(2), 332(2007)
[15](李茜茜, 卢绮雯, 李立华, 周长忍, 新型天然骨材料的制备方法及其表征, 生物医学工程学杂志, 24(2), 332(2007)
[16]ZHANG Run, DENG Zhengxing, LI Lihua, ZHOU Changren, Preparation of porous PLA scaffold materials by surperctitical CO2 fluid technique, Chinese Joural of Materials Reseach, 17(6), 665(2003)
[17](张润, 邓政兴, 李立华, 周长忍, 用超临界CO$_{2}$制备聚乳酸三维多孔支架材料, 材料研究学报, 17(6), 665(2003))

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.