Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 635-639    
  研究论文 本期目录 | 过刊浏览 |
N18、Zry--4和M5锆合金中氢的固溶度
唐睿;  杨晓雪
中国核动力研究设计院核燃料及材料国家级重点实验室 成都 610041
Study on terminal solid solubility of hydrogen in N18, Zry–4 and M5 zirconium alloys
TANG Rui;  YANG Xiaoxue
National Key Lab. for Nuclear Fuel and Materials; Nuclear Power Institute of China; Chengdu 610041
引用本文:

唐睿 杨晓雪. N18、Zry--4和M5锆合金中氢的固溶度[J]. 材料研究学报, 2009, 23(6): 635-639.
. Study on terminal solid solubility of hydrogen in N18, Zry–4 and M5 zirconium alloys[J]. Chin J Mater Res, 2009, 23(6): 635-639.

全文: PDF(844 KB)  
摘要: 

用差示扫描量热法(DSC)研究了含氢20--240 μg/g的N18、Zry--4和M5三种锆合金加热时氢化物完全溶解时的固溶度(TSSD)和冷却时氢化物开始析出时的固溶度(TSSP)并使用TSSD或TSSP数据拟合出最优方程.结果表明, 这些合金的TSSD或TSSP差别都很小, TSSD与TSSP之间都存在显著的滞后,是氢化物与基体间的体积错配应变所导致. 根据冷却时DSC放热峰的宽度,计算出氢化物从过饱和固溶体中析出的平均速率, 并拟合出最优方程.氢化物析出的活化能与氢在锆合金中的扩散激活能近似, 表明氢化物的析出受到氢扩散的控制.

关键词 材料科学基础学科  氢的固溶度  差示扫描量热法  锆合金  氢化物溶解和析出    
Abstract

The terminal solid solubilities for dissolution of hydrides (TSSD) during heating–up and for precipitation of hydrides (TSSP) during cooling–down for N18, Zry–4 and M5 with hydrogen concentrations of 20–240 μg/g were measured by differential scanning calorimetry (DSC). The results show that the difference in TSSD or TSSP is very small for these alloys, and best–fit equations were derived. A significant hysteresis between the solvi of TSSD and TSSP occurred, resulting from the hydride–matrix volumetric misfit strain. Based on the widths of the DSC peaks obtained during cooling–down, the average precipitation rates of zirconium hydrides from super–saturated state were evaluated by best–fit equations. The activation energies of precipitation rates were approximately equivalent to the reported values of hydrogen diffusion in Zircaloys, indicating a hydrogen diffusion mechanism.

Key wordsfoundational discipline in materials science    terminal solid solubility of hydrogen    differential scanning calorimetry    Zr–based alloys    hydride dissolution and precipitation
收稿日期: 2009-05-06     
ZTFLH: 

TG146

 

1 D.O.Northwood, O.Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, Int. Met. Rev., 28, 92–121(1983)
2 B.Cox, Environmentally–induced cracking of zirconium alloys–A review, J. Nucl. Mater., 170, 1–23 (1990)
3 S.Q.Shi, G.K.Shek, M.P.Puls, Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys, J. Nucl. Mater., 218, 189–211(1995)
4 M.P.Puls, Effects of crack tip stress state and hydride–matrix interaction stresses on delayed hydride cracking, Metall. Trans. A, 21, 2905–2917 (1990)
5 R.N.Singh, N.Kumar, R.Kishore, Delayed hydride cracking in Zr–2.5Nb pressure tube material, J. Nucl. Mater., 304, 189–203(2002)
6 D.Khatamian, Z.L.Pan, M.P.Puls, C.D.Cann, Hydrogen solubility limits in Excel, an experimental zirconium–based alloys, J. Alloys Compd., 231, 488–493(1995)
7 W.H.Erikson, D.Hardie, The influence of alloying elements on the terminal solubility of hydrogen in α– zirconium, J. Nucl. Mater., 13, 254–262(1964)
8 A.Sawatzky, B.J.S.Wilkins, Hydrogen solubility in zirconium alloys determined by thermal diffusion, J. Nucl. Mater., 22, 304–310(1967)
9 D.Khatamian, V.C.Ling, Hydrogen solubility limits in α– and β–zirconium, J. Alloys Compd., 253–254, 162–166(1997)
10 Y.Mishima, S.Ishino, S.Nakajtma, A resistometric study of the solution and precipitation of hydrides in unalloyed zirconium, J. Nucl. Mater., 27, 335–344(1968)
11 D.Setoyama, J.Matsunaga, M.Ito, Influence of additive elements on the terminal solid solubility of hydrogen for zirconium alloy, J. Nucl. Mater., 344, 291–294(2005)
12 D.Khatamian, Solubility and partitioning of hydrogen in metastable Zr–based alloys used in the nuclear industry, J. Alloys Comp., 293–295, 893–899(1999)
13 Z.L.Pan, I.G.Ritchie, M.P.Puls, The terminal solid solubility of hydrogen and deuterium in Zr–2.5Nb alloys, J. Nucl. Mater., 228, 227–237(1996)
14 G.F.Slattery, The terminal solubility of hydrogen in zirconium alloys between 30 and 400 , J. Inst. Met., 95, 43–47(1967)
15 A.McMinn, E.C.Darby, J.S.Schofield, The terminal solid solubility of hydrogen in zirconium alloys, in: G.P.Sabol, G.D.Moan (Eds.), Proceedings of the 12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, 2000, pp. 173–195
16 J.J.Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy–2 and Zircaloy–4, J. Nucl. Mater., 22, 292–230(1967)
17 R.N.Singh, S.Mukherjeea, A.Guptab, S.Banerjeea, Terminal solid solubility of hydrogen in Zr–alloy pressure tube materials, J. Alloys Comp., 389, 102–112(2005)
18 K.Une, S.Ishimoto, Dissolution and precipitation behavior of hydrides in Zircaloy–2 and high Fe Zircaloy, J. Nucl. Mater., 322, 66–72(2003)
19 D.Khatamian, Effect of β–Zr decomposition on the solubility limits for H in Zr–2.5Nb, J. Alloys Compd., 356–357, 22–26(2003)
20 J.H.Root, R.W.L.Fong, Neutron diffraction study of the precipitation and dissolution of hydrides in Zr–2.5Nb pressure tube material, J. Nucl. Mater., 232, 75–85 (1996)
21 C.D.Cann, A.Atrens, A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations, J. Nucl. Mater., 88, 42–50(1980)
22 P.Vizca´?no, A.D.Banchik, J.P.Abriata, Solubility of hydrogen in Zircaloy–4: irradiation induced increase and thermal recovery, J. Nucl. Mater., 304, 96–106(2002)
23 K.Une, S.Ishimoto, Heat capacity of hydrogenated Zircaloy–2 and high Fe Zircaloy, J. Nucl. Mater., 323, 101–107 (2003)
24 M.P.Puls, Elastic and plastic accommodation effects on metal–hydride solubility, Acta Matall., 32, 1259–1269(1984)
25 M.P.Puls, On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking, J. Nucl. Mater., 165, 128–141(1989)
26 J.J Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy–2 and Zircaloy–4, J. Nucl. Mater., 43, 330–338(1972)
27 A.Sawatzky, The diffusion and solubility of hydrogen in the alpha phase of zircaloy–2, J. Nucl. Mater., 2, 62–68(1960)

[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.