Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (2): 130-138    
  论文 本期目录 | 过刊浏览 |
修饰纳米CdS/聚合物的界面相互作用与光学性能
容敏智;章明秋;梁海春;曾汉民
中山大学材料科学研究所教育部聚合物复合材料及功能材料重点实验室
Effects of surface modification on dispersion of nano-CdS in polymers and their optical properties
;;;
中山大学材料科学研究所教育部聚合物复合材料及功能材料重点实验室
引用本文:

容敏智; 章明秋; 梁海春; 曾汉民 . 修饰纳米CdS/聚合物的界面相互作用与光学性能[J]. 材料研究学报, 2004, 18(2): 130-138.
, , , . Effects of surface modification on dispersion of nano-CdS in polymers and their optical properties[J]. Chin J Mater Res, 2004, 18(2): 130-138.

全文: PDF(3179 KB)  
摘要: 采用微乳液法结合原位表面修饰合成了纳米尺度的硫化镉粒子, 采用溶液共混和静态铺膜方法制备了纳米粒子/聚合物复合体系, 以研究纳米粒子与聚合物间的界面作用. 结果表明, 经修饰的纳米CdS粒子比较均匀地分散于聚合物基体内, 纳米粒子与聚合物基体间存在较强的相互作用. 根据复合体系的紫外--可见吸收光谱和荧光光谱, 分析了表面修饰(表面修饰剂种类、表面修饰剂用量等)对纳米粒子的分散以及复合体系界面特性的影响, 证实了表面修饰剂具有促进纳米粒子分散和消除粒子表面缺陷的作用.
关键词 复合材料界面作用微乳液纳米硫化镉表面    
Abstract:A nano-sized CdS particles was incorporated into polymer films by solvent mixing, casting and evaporating methods. The CdS particles of about 6 nm in size were prepared through micro-emulsion and in-situ surface modification with thiol and imidazole, respectively. It is proved that imidazole modification promotes the dispersion of these nanoparticles into PMMA, while thiol modified ones can be uniformly dispersed into PS matrix due to the selective solubility among the surface modifiers, solvents and polymers. The resultant polymer composites were characterized using optical, structural and thermal techniques. FTIR measurements revealed the formation of strong bonding between the particles and the polymer matrices. Besides the surface modifier, the polymers also help to block the surface defects that trap the charge carriers, resulting in enhanced light absorption and emission behavior. On the other hand, in the presence of CdS particles, the thermal decomposition temperatures of PMMA and PS shifted towards higher temperature region, further demonstrating the interaction between the particles and the polymers. The mechanisms accounting for the variation in the composites optical properties with CdS content and the amount of the surface modifiers were explained on the basis of the effects of surface modifier morphologies, dispersion status of the particles, and the complex interaction among the particles, surface modifiers and polymers.
Key wordscomposite    interface interaction    micro-emulsion    nano-meter CdS    surface modification    epoxy coatings
收稿日期: 2004-05-21     
ZTFLH:  TB332  
1 D.Y.Godovsky,Advances in Polymer Science,119,79(1995)
2 G.Springholz,V.Holy,M.Pinczolits,G.Bauer,Science,282,734(1998)
3 Y.Zhang,X.Wang,D.G.Fu,J.Q.Cheng,Y.C.Shen,J.Z.Liu,Z.H.Lu,Journal of Physics and Chemistry of Solids,62,90(2001)
4 ZHANQ Lide,MU Jimei,Nanometer Materials and Strcture(Beijing,Science Press,2001) p.490(张立德,牟季美,纳米材料和纳米结构(北京,科学出版社,2001) p.490)
5 Y.Wang,A.Suna,M.Mahler,R.Kasowski,J.Phys.Chem.,87,7315(1987)
6 N.Herron,Y.Wang,H.Eckert,J.Am.Chem.Soc.,112,1322(1990)
7 D.Sajinovic,Z.V.Saponjic,N.Cvjeticanin,M.M.Cincovic,J.M.Nedeljkovic,Chem.Phys.Lett.,329,168(2000)
8 ZENG Rong,RONG Minzhi,ZHANG Mingqiu,ZENG Hanmin,Chinese.Phys. Lettt,17(9) ,697(2000) (曾戎,容敏智,章明秋,曾汉民,中国物理快报,17(9) ,697(2000) )
9 M.Z.Rong,M.Q.Zhang,H.C.Liang,H.M.Zeng,Chem.Phys.,286,267(2003)
10 R.Zeng,M.Z.Rong,M.Q.Zhang,H.C.Liang,H.M.Zeng,Appl.Surf.Sci.,187,239(2002)
11 H.C.Liang,H.Xiang,M.Z.Rong,M.Q.Zhang,H.M.Zeng,S.F.Wang,Chin.Phys.Lett.,19(6) ,871(2002)
12 G.Xue,Q.P.Dai,S.E.Jiang,J.Am.Chem.Soc.,110,2393(1988)
13 NING Yongcheng,Organic Compounds Structural Identification and Organic Spectrascopy(Beijing,Science Press,2001) p.332(宁永成,有机化合物结构鉴定与有机波谱学(北京,科学出版社,2001) p.332)
14 Y.Nosaka,N.Ohta,T.Fukuyama,N.Fujii,Journal of Colloid and Interface Science,155,23(1993)C
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.