|
|
原位小冲头压缩速率对X65管线钢氢脆敏感性的影响 |
吴晓祺1,2, 万红江2,3, 明洪亮2,3( ), 王俭秋2,3, 柯伟2, 韩恩厚4 |
1 东北大学材料科学与工程学院 沈阳 110819 2 中国科学院金属研究所 沈阳 110016 3 中国科学技术大学材料科学与工程学院 沈阳 110016 4 广东腐蚀科学与技术创新研究院 广州 510530 |
|
Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test |
WU Xiaoqi1,2, WAN Hongjiang2,3, MING Hongliang2,3( ), WANG Jianqiu2,3, KE Wei2, HAN En-Hou4 |
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 4 Institute of Corrosion Science and Technology, Guangzhou 510530, China |
引用本文:
吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
Xiaoqi WU,
Hongjiang WAN,
Hongliang MING,
Jianqiu WANG,
Wei KE,
En-Hou HAN.
Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. Chinese Journal of Materials Research, 2025, 39(2): 92-102.
1 |
Amin M, Shah H H, Fareed A G, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change [J]. Int. J. Hydrogen Energy, 2022, 47(77): 33112
|
2 |
Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 9B(6): 521
|
3 |
Espegren K, Damman S, Pisciella P, et al. The role of hydrogen in the transition from a petroleum economy to a low-carbon society [J]. Int. J. Hydrogen Energy, 2021, 46(45): 23125
|
4 |
Jia G W, Lei M Y, Li M Y, et al. Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review [J]. Int. J. Hydrogen Energy, 2023, 48: 32137
|
5 |
Palacios A, Cordova-Lizama A, Castro-Olivera P M, et al. Hydrogen production in Mexico: state of the art, future perspectives, challenges, and opportunities [J]. Int. J. Hydrogen Energy, 2022, 47(70): 30196
|
6 |
Erdener B C, Sergi B, Guerra O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. Int. J. Hydrogen Energy, 2023, 48(14): 5595
|
7 |
Louthan M R, Caskey G R, Donovan J A, et al. Hydrogen embrittlement of metals [J]. Mater. Sci. Eng., 1972, 10: 357
|
8 |
Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steel: a review [J]. Int. J. Hydrogen Energy, 2018, 43(31): 14584
|
9 |
Bueno A H S, Moreira E D, Gomes J A C P. Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel [J]. Eng. Failure Anal., 2014, 36: 423
|
10 |
Gao K W, Chu W Y. Investigation of environment fracture from dislocation point of view [J]. Chin. J. Mater. Res., 1999, 13(4): 337
|
10 |
高克玮, 褚武扬. 环断裂境的位错层次研究 [J]. 材料研究学报, 1999, 13(4): 337
|
11 |
Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios [J]. Int. J. Hydrogen Energy, 2018, 43(22): 10420
|
12 |
Du J W, Ming H L, Wang J Q, et al. Hydrogen embrittlement of 20# seamless steel in medium and low pressure gaseous hydrogen [J]. Mater. Lett., 2023, 334: 133734
|
13 |
Xu H, Xia X M, Hua L, et al. Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.25Cr–1Mo steel by SSRT method [J]. Eng. Failure Anal., 2012, 19: 43
|
14 |
Peral L B, Zafra A, Belzunce J, et al. Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures [J]. Int. J. Hydrogen Energy, 2019, 44(7): 3953
|
15 |
Birenis D, Ogawa Y, Matsunaga H, et al. Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests [J]. Mater. Sci. Eng., 2019, 756A: 396
|
16 |
Singh D K, Singh Raman R K, Maiti S K, et al. Investigation of role of alloy microstructure in hydrogen-assisted fracture of AISI 4340 steel using circumferentially notched cylindrical specimens [J]. Mater. Sci. Eng., 2017, 698A: 191
|
17 |
Kyriakopoulou H P, Karmiris-Obratanski P, Tazedakis A S, et al. Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel [J]. Micromachines, 2020, 11(4): 430
|
18 |
Álvarez G, Zafra A, Rodríguez C, et al. SPT analysis of hydrogen embrittlement in CrMoV welds [J]. Theor. Appl. Fract. Mech., 2020, 110: 102813
|
19 |
García T E, Arroyo B, Rodríguez C, et al. Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels [J]. Theor. Appl. Fract. Mech., 2016, 86: 89
|
20 |
Shin H S, Custodio N A, Baek U B. Numerical analysis for characterizing hydrogen embrittlement behaviors induced in STS316L stainless steel using an in-situ small-punch test [J]. Theor. Appl. Fract. Mech., 2021, 116: 103139
|
21 |
Álvarez G, Zafra A, Belzunce F J, et al. Effect of internal hydrogen on the fatigue crack growth rate in the coarse-grain heat-affected zone of a CrMo steel [J]. Metals, 2022, 12(4): 673
|
22 |
Nguyen T T, Park J S, Nahm S H, et al. Evaluation of hydrogen related degradation of API X42 pipeline under hydrogen/natural gas mixture conditions using small punch test [J]. Theor. Appl. Fract. Mech., 2021, 113: 102961
|
23 |
de Almeida L F M, Oliveira S A G, Paes M T P, et al. Effect of test velocity on the tensile strength of high strength steels using the small punch test in a hydrogen environment [J]. Int. J. Pressure Vessels Piping, 2021, 194: 104552
|
24 |
Han Z L, Song Y, Liu Y L, et al. Coupling effect of hydrogen and strain rate on 2.25Cr1Mo0.25V steel deformed over wide strain rate ranges [J]. Int. J. Hydrogen Energy, 2023, 48(2): 798
|
25 |
Qi X L, Ma Z, Chen L, et al. Effect of hydrogen transportation by dislocations on hydrogen embrittlement of materials [J]. Mech. Eng., 2022, 44(3): 519
|
25 |
齐晓琳, 马 倬, 陈 林 等. 位错载氢运动对材料氢脆行为的影响 [J]. 力学与实践, 2022, 44(3): 519
|
26 |
Wada K, Shibata C, Enoki H, et al. Hydrogen-induced intergranular cracking of pure nickel under various strain rates and temperatures in gaseous hydrogen environment [J]. Mater. Sci. Eng., 2023, 873A: 145040
|
27 |
Zhu X F, Wu R G. Hydrogen embrittlement of 30CrMnSiA steel subjected to slow dynamic strain [J]. J. Wuhan Iron Steel Univ., 1989, 12(3): 44
|
27 |
祝向福, 吴忍畊. 30CrMnSiA钢的慢应变速率动载氢脆 [J]. 武汉钢铁学院学报, 1989, 12(3): 44
|
28 |
Bae K O, Shin H S, Baek U B. Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test [J]. Int. J. Hydrogen Energy, 2021, 46(38): 20107
|
29 |
Shin H S, Bae K O, Baek U B, et al. Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor [J]. Int. J. Hydrogen Energy, 2019, 44(41): 23472
|
30 |
Cabrini M, Lorenzi S, Marcassoli P, et al. Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection [J]. Corros. Rev., 2011, 29: 261
|
31 |
Álvarez G, Arniella V, Belzunce F J, et al. Study of the influence of current density and displacement rate on hydrogen embrittlement using small punch tests [J]. Theor. Appl. Fract. Mech., 2023, 125: 103838
|
32 |
Kang I W, Pyun S I, Kim K T. The effects of dislocations on the trapping and transport of hydrogen in 3.3Ni-1.6Cr steel during plastic deformation [J]. Scr. Metall., 1989, 23(2): 223
|
33 |
Itoh G, Koyama K, Kanno M. Evidence for the transport of impurity hydrogen with gliding dislocations in aluminum [J]. Scr. Mater., 1996, 35(6): 695
|
34 |
Cottrell A H. Theory of dislocations [J]. Prog. Met. Phys., 1949, 1: 77
|
35 |
Zhang B T, Li S H, Li Y F, et al. Effect of stress triaxiality on hydrogen embrittlement susceptibility of quenched boron steel B1500HS [J]. Chin. J. Mater. Res., 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
|
35 |
张渤涛, 李淑慧, 李永丰 等. 应力三轴度对淬火态硼钢氢脆敏感性的影响 [J]. 材料研究学报, 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|