Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 92-102    DOI: 10.11901/1005.3093.2024.029
  研究论文 本期目录 | 过刊浏览 |
原位小冲头压缩速率对X65管线钢氢脆敏感性的影响
吴晓祺1,2, 万红江2,3, 明洪亮2,3(), 王俭秋2,3, 柯伟2, 韩恩厚4
1 东北大学材料科学与工程学院 沈阳 110819
2 中国科学院金属研究所 沈阳 110016
3 中国科学技术大学材料科学与工程学院 沈阳 110016
4 广东腐蚀科学与技术创新研究院 广州 510530
Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test
WU Xiaoqi1,2, WAN Hongjiang2,3, MING Hongliang2,3(), WANG Jianqiu2,3, KE Wei2, HAN En-Hou4
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4 Institute of Corrosion Science and Technology, Guangzhou 510530, China
引用本文:

吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
Xiaoqi WU, Hongjiang WAN, Hongliang MING, Jianqiu WANG, Wei KE, En-Hou HAN. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. Chinese Journal of Materials Research, 2025, 39(2): 92-102.

全文: PDF(34666 KB)   HTML
摘要: 

用原位小冲头压缩X65管线钢(Small punch test, SPT),研究了压缩速率对其氢脆敏感性的影响。结果表明,与一侧接触4 MPa氮气的试样相比,一侧接触4 MPa氢气的试样其破裂断口呈明显的准解理特征,氢脆现象显著且冲击(Small punch, SP)能量显著降低。在临氢环境中随着压缩速率的降低材料的氢脆敏感性显著提高,SP能量值也随之降低。这表明,在此压缩速率范围内X65管线钢的氢脆敏感性随着压缩速率的降低而提高。在低压缩速率条件下氢的扩散跟随位错运动进行,位错伴随氢气团一起运动到裂纹尖端而引发显著的氢脆。还基于载荷-位移曲线的分段压缩实验结果并配合试样破裂过程中各阶段的形貌分析,揭示了在材料受力过程中氢的作用机制。

关键词 金属材料氢脆原位小冲头试验X65管线钢压缩速率破裂形貌SP能量    
Abstract

Herein, the effect of compression rate on the hydrogen embrittlement (HE) sensitivity of X65 pipeline steel was studied viain-situ small punch test (SPT). Compared with the samples exposed to 4 MPa nitrogen on one side, those exposed to 4 MPa hydrogen show significant HE sensitivity with features of obvious quasi-cleavage fracture as well as a significant decrease in small punch (SP) energy. When exposed to hydrogen, as the compression rate decreases, the HE sensitivity of samples increases significantly, while the SP energy value decreases accordingly. This indicates that within this range of compression rates, the HE sensitivity of X65 pipeline steel exhibits an upward trend with decreasing compression rate. At low compression rates, hydrogen diffusion can keep up with dislocation motion. Dislocations can carry hydrogen clusters along to the crack tip, thereby triggering significant hydrogen embrittlement phenomena. Additionally, based on the segmental compression test results of the load-displacement curves and the morphology analysis of the sample in each stage of the fracture process, the mechanism of hydrogen effect on the compression process of X65 pipeline steel by the applied stress was revealed.

Key wordsmetallic materials    hydrogen embrittlement    in-situ small punch test    X65 pipeline steel    compression rate    fracture morphology    SP energy
收稿日期: 2024-01-09     
ZTFLH:  TG172.3+2  
基金资助:国家重点研发计划(2021YFB4001601);中国科学院青年创新促进会资助项目(2022187)
通讯作者: 明洪亮,研究员,hlming12s@imr.ac.cn,研究方向为能源关键结构材料使役行为
Corresponding author: MING Hongliang, Tel: (024)23998826, E-mail: hlming12s@imr.ac.cn
作者简介: 吴晓祺,女,1999年生,硕士生
CMnCuNiCrMoNbTiFe
0.041.230.150.150.250.060.040.01Bal.
表1  X65管线钢的化学成分
图1  压缩试样的取样方式和尺寸示意图
图2  X65管线钢中不同方向上的显微组织
图3  夹具装置实物图、夹具内部示意图和压缩设备实物图
Test conditionsTest parameters
Specimen dimension / mmϕ9 × 0.5

Ball diameter / mm

Gas environment

Gas pressure / MPa

Compression rate / mm·min-1

Test temperature

2.5

N2(99.999%), H2(99.999%)

4.0

1.0, 0.1, 0.01, 0.004

Room temperature

表2  原位小冲头压缩实验条件
图4  在4 MPa氮气及氢气环境中不同压缩速率下的载荷-位移曲线、在不同气体环境中不同压缩速率的载荷-位移曲线以及在4 MPa氮气环境中压缩速率为1 mm·min-1的载荷-位移曲线分区图
图5  在不同气体环境中不同压缩速率的SP能量值
Compression rate / mm·min-1Gas environmentp / MPaFm/ Nσm/ mmEsp/ J
1.0N241723.622.502.45
0.0041530.762.472.26
1.0H241572.682.101.76
0.11477.602.001.62
0.011294.531.921.36
0.004959.311.921.11
表3  在不同气体环境中不同压缩速率的实验结果汇总
图6  在不同条件下破裂试样的SEM照片
图7  在4 MPa的氮气及氢气环境中第Ⅰ压缩阶段试样表面的SEM照片
图8  在4 MPa的氮气及氢气环境中第Ⅱ压缩阶段试样表面的SEM照片
图9  在4 MPa的氮气及氢气环境中第Ⅲ压缩阶段试样表面的SEM照片
图10  在4 MPa的氮气及氢气环境中第IV压缩阶段试样表面的SEM照片
图11  压缩速率为1 mm·min-1条件下在4 MPa氮气及氢气环境中试样的破裂截面图
1 Amin M, Shah H H, Fareed A G, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change [J]. Int. J. Hydrogen Energy, 2022, 47(77): 33112
2 Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 9B(6): 521
3 Espegren K, Damman S, Pisciella P, et al. The role of hydrogen in the transition from a petroleum economy to a low-carbon society [J]. Int. J. Hydrogen Energy, 2021, 46(45): 23125
4 Jia G W, Lei M Y, Li M Y, et al. Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review [J]. Int. J. Hydrogen Energy, 2023, 48: 32137
5 Palacios A, Cordova-Lizama A, Castro-Olivera P M, et al. Hydrogen production in Mexico: state of the art, future perspectives, challenges, and opportunities [J]. Int. J. Hydrogen Energy, 2022, 47(70): 30196
6 Erdener B C, Sergi B, Guerra O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. Int. J. Hydrogen Energy, 2023, 48(14): 5595
7 Louthan M R, Caskey G R, Donovan J A, et al. Hydrogen embrittlement of metals [J]. Mater. Sci. Eng., 1972, 10: 357
8 Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steel: a review [J]. Int. J. Hydrogen Energy, 2018, 43(31): 14584
9 Bueno A H S, Moreira E D, Gomes J A C P. Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel [J]. Eng. Failure Anal., 2014, 36: 423
10 Gao K W, Chu W Y. Investigation of environment fracture from dislocation point of view [J]. Chin. J. Mater. Res., 1999, 13(4): 337
10 高克玮, 褚武扬. 环断裂境的位错层次研究 [J]. 材料研究学报, 1999, 13(4): 337
11 Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios [J]. Int. J. Hydrogen Energy, 2018, 43(22): 10420
12 Du J W, Ming H L, Wang J Q, et al. Hydrogen embrittlement of 20# seamless steel in medium and low pressure gaseous hydrogen [J]. Mater. Lett., 2023, 334: 133734
13 Xu H, Xia X M, Hua L, et al. Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.25Cr–1Mo steel by SSRT method [J]. Eng. Failure Anal., 2012, 19: 43
14 Peral L B, Zafra A, Belzunce J, et al. Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures [J]. Int. J. Hydrogen Energy, 2019, 44(7): 3953
15 Birenis D, Ogawa Y, Matsunaga H, et al. Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests [J]. Mater. Sci. Eng., 2019, 756A: 396
16 Singh D K, Singh Raman R K, Maiti S K, et al. Investigation of role of alloy microstructure in hydrogen-assisted fracture of AISI 4340 steel using circumferentially notched cylindrical specimens [J]. Mater. Sci. Eng., 2017, 698A: 191
17 Kyriakopoulou H P, Karmiris-Obratanski P, Tazedakis A S, et al. Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel [J]. Micromachines, 2020, 11(4): 430
18 Álvarez G, Zafra A, Rodríguez C, et al. SPT analysis of hydrogen embrittlement in CrMoV welds [J]. Theor. Appl. Fract. Mech., 2020, 110: 102813
19 García T E, Arroyo B, Rodríguez C, et al. Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels [J]. Theor. Appl. Fract. Mech., 2016, 86: 89
20 Shin H S, Custodio N A, Baek U B. Numerical analysis for characterizing hydrogen embrittlement behaviors induced in STS316L stainless steel using an in-situ small-punch test [J]. Theor. Appl. Fract. Mech., 2021, 116: 103139
21 Álvarez G, Zafra A, Belzunce F J, et al. Effect of internal hydrogen on the fatigue crack growth rate in the coarse-grain heat-affected zone of a CrMo steel [J]. Metals, 2022, 12(4): 673
22 Nguyen T T, Park J S, Nahm S H, et al. Evaluation of hydrogen related degradation of API X42 pipeline under hydrogen/natural gas mixture conditions using small punch test [J]. Theor. Appl. Fract. Mech., 2021, 113: 102961
23 de Almeida L F M, Oliveira S A G, Paes M T P, et al. Effect of test velocity on the tensile strength of high strength steels using the small punch test in a hydrogen environment [J]. Int. J. Pressure Vessels Piping, 2021, 194: 104552
24 Han Z L, Song Y, Liu Y L, et al. Coupling effect of hydrogen and strain rate on 2.25Cr1Mo0.25V steel deformed over wide strain rate ranges [J]. Int. J. Hydrogen Energy, 2023, 48(2): 798
25 Qi X L, Ma Z, Chen L, et al. Effect of hydrogen transportation by dislocations on hydrogen embrittlement of materials [J]. Mech. Eng., 2022, 44(3): 519
25 齐晓琳, 马 倬, 陈 林 等. 位错载氢运动对材料氢脆行为的影响 [J]. 力学与实践, 2022, 44(3): 519
26 Wada K, Shibata C, Enoki H, et al. Hydrogen-induced intergranular cracking of pure nickel under various strain rates and temperatures in gaseous hydrogen environment [J]. Mater. Sci. Eng., 2023, 873A: 145040
27 Zhu X F, Wu R G. Hydrogen embrittlement of 30CrMnSiA steel subjected to slow dynamic strain [J]. J. Wuhan Iron Steel Univ., 1989, 12(3): 44
27 祝向福, 吴忍畊. 30CrMnSiA钢的慢应变速率动载氢脆 [J]. 武汉钢铁学院学报, 1989, 12(3): 44
28 Bae K O, Shin H S, Baek U B. Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test [J]. Int. J. Hydrogen Energy, 2021, 46(38): 20107
29 Shin H S, Bae K O, Baek U B, et al. Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor [J]. Int. J. Hydrogen Energy, 2019, 44(41): 23472
30 Cabrini M, Lorenzi S, Marcassoli P, et al. Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection [J]. Corros. Rev., 2011, 29: 261
31 Álvarez G, Arniella V, Belzunce F J, et al. Study of the influence of current density and displacement rate on hydrogen embrittlement using small punch tests [J]. Theor. Appl. Fract. Mech., 2023, 125: 103838
32 Kang I W, Pyun S I, Kim K T. The effects of dislocations on the trapping and transport of hydrogen in 3.3Ni-1.6Cr steel during plastic deformation [J]. Scr. Metall., 1989, 23(2): 223
33 Itoh G, Koyama K, Kanno M. Evidence for the transport of impurity hydrogen with gliding dislocations in aluminum [J]. Scr. Mater., 1996, 35(6): 695
34 Cottrell A H. Theory of dislocations [J]. Prog. Met. Phys., 1949, 1: 77
35 Zhang B T, Li S H, Li Y F, et al. Effect of stress triaxiality on hydrogen embrittlement susceptibility of quenched boron steel B1500HS [J]. Chin. J. Mater. Res., 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
35 张渤涛, 李淑慧, 李永丰 等. 应力三轴度对淬火态硼钢氢脆敏感性的影响 [J]. 材料研究学报, 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
[1] 胥聪敏 孙姝雯 朱文胜 陈志强 李城臣. 不同油水比环境下三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[7] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[8] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[9] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[10] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[11] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[12] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[13] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[14] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.